AC Transit is pleased to present our fourth annual environmental sustainability report. Over the course of recent years, AC Transit has tracked and reported our environmental performance using a number of key metrics such as waste generation and reductions, fuel use, air emissions, and emerging environmental endeavors. Through this monitoring and disclosure process, we have seen our environmental performance improve in a number of ways. AC Transit continues to work internally, as well with our regional partners, to improve our service and reduce our environmental impacts and operating costs.

During 2009 and 2010, we made significant progress towards completing the expansion of our hydrogen bus infrastructure. We have begun construction of the new hydrogen generation and fueling station in Emeryville, welcomed five (more efficient) next-generation hydrogen buses into our fleet, and awarded the contract for installation of the solar panels that will supply a portion of the power required to run the new hydrogen generation operations. As we move towards integrating these cutting-edge buses into our fleet, we will continue to collaborate with our partners and riders to improve our services while decreasing our impacts to the environment.

Our bus fleet has been, and continues to be, one of the most utilized in the state. Last year, in spite of the continued economic pressures, we carried approximately 61 million riders over 25 million miles. In order to better manage our operations, we have installed Fleet-Watch, an automated fleet management system that allows us to track vehicle mileage, monitor fuel and other fluid usage, schedule preventive maintenance, and identify engine leaks. Moving forward, this information will enable us to calculate our greenhouse gas emissions with greater certainty while reducing our internal time requirements. Additionally, this system can be used to maximize our fleet efficiency by allowing us to match buses to routes and manage our transit routes more efficiently.

Moving forward, our Board of Directors adopted our Climate Action Plan and we plan to complete our hydrogen fueling station this year. While we monitor emerging legislation and regulatory requirements, we will continue to participate, to the greatest extent possible, by collaborating on emerging solutions such as alternative fuels, more efficient information systems, and better environmental tracking and performance.

Sincerely,

Mary V. King
Interim General Manager, AC Transit
Table of Contents

A Message from the General Manager ... 3
Taking Action in the Face of Uncertainty ... 5
Our Organization ... 6
 - Governance .. 6
 - Environmental Justice and Social Equity ... 7
 - Trends in Service and Ridership ... 7
Our Environmental Footprint ... 10
 - Fuel and Energy Usage ... 10
 - Greenhouse Gas Emissions ... 14
 - Fleet Emissions ... 16
 - Water Use ... 19
 - Our Waste Streams ... 20
 - Regulatory Compliance .. 22
 - Inspections .. 22
Reducing Our Footprint .. 25
 - HyRoad/ZEBA ... 25
 - Solar Power .. 27
 - Minimizing Our Waste .. 27
 - Facility Lighting Retrofits .. 29
 - Facility Improvements .. 29
 - Regional Climate Action Planning ... 30
Promoting Public Transportation ... 31
 - Rapid Bus .. 32
 - TransLink® & Clipper ... 33
 - EasyPass ... 34
 - NextBus .. 35
Index of GRI Performance Indicators (GRI G3 RG) 36

TAKING ACTION IN THE FACE OF UNCERTAINTY

AC Transit has carefully monitored the emergence of a number of pieces of legislation at the state and federal levels that will have an impact on the public transportation sector. While some legislation, especially at the state level, has already emerged – such as SB 375\(^1\) – for the most part, we are in uncertain times.

Mandatory greenhouse gas (GHG) reporting regulations are in place at the state and federal level. Since AC Transit has been publicly reporting our emissions since 2006, we have an excellent picture of our emissions profile. It should come as no surprise that the largest emissions source (over 90% of the total) in our inventory is the combustion of diesel fuel associated with running our transit fleet vehicles. At both the federal and state level, the mandatory reporting programs focus primarily on stationary combustion, and therefore, our largest emissions sources are exempt from direct reporting requirements.

Where we do expect to see ourselves affected by emerging regulation is in the upstream management of fuel (refineries). The most likely short- and long-term effect of these emerging regulatory requirements is that fuel prices can reasonably be expected to increase. State and federal mandates are already in place to decrease the carbon intensity of fuels and to increase the fuel efficiency of new vehicles. The use of hydrogen fuel cell technology and the planned use of diesel-electric hybrid buses will help reduce AC Transit’s carbon intensity and increase fuel efficiency. However, we are not stopping there. We developed a Climate Action Plan for reducing our GHG emissions over the next decade. As adopted, AC Transit hopes to achieve a 15% reduction target using a few key performance metrics (such as emissions per passenger, per vehicle mile travelled, and per revenue vehicle hour). The components of this plan are discussed in greater detail later in this report.

\(^1\)SB 375 provides for emissions-reducing goals for which regions can plan, integrates disjointed planning activities, and provides incentives for local governments and developers to follow new planned growth patterns.
While we have begun to plan our actions to reduce our GHG emissions, the unfolding landscape of legislation, as well as developments in broader regional efforts, will shape our final actions in this regard. As mentioned above, SB 375 may have the most immediate impact to our operations. This legislation directs the California Air Resources Board (CARB) to set regional targets for the reduction of GHG emissions. While CARB is responsible for setting region-wide GHG emission targets for each Metropolitan Planning Organization (MPO) in the state, each MPO will be responsible for developing its own sustainable community’s strategy, which seeks to align transportation and housing planning to reduce greenhouse gas emissions. In our area, the Metropolitan Transit Commission (MTC) is tasked with these responsibilities and AC Transit has been and will continue to be directly involved in their planning process.

Our Organization

In October 2010, AC Transit celebrated our 50th year of bus service. In the half century that AC Transit has been in operation, the District has expanded its service area considerably, expanded the types of services it offers, and become a leader in the use of alternative fuels. Since our inception, AC Transit has continually looked for better ways to move people. AC Transit is one of the largest transit agencies in California. We are responsible for providing primary public transportation for residents of 13 cities and portions of Alameda and Contra Costa Counties along the eastern shores of San Francisco Bay and San Pablo Bay. Our more than 600 buses provide our riders with 26 million miles of service annually, connecting to 10 other bus systems, 22 Bay Area Rapid Transit District (BART) stations, and 6 Amtrak stations.

Additionally, AC Transit, in a joint venture with BART, operates the Americans with Disabilities Act (ADA) complementary service known as the East Bay Paratransit Consortium (EBPC). As of October 1, 2010, the consortium operates over 200 vehicles, employs well over 400 people, and provides approximately 700,000 trips annually.

Governance

AC Transit is governed by a seven-member Board of Directors elected by East Bay voters to four-year terms. Five Directors represent geographic wards, while two are
elected at large. The Board has full power to conduct all District business including the right to acquire, construct, own, operate, and control transit facilities; fix rates; and establish routes and levels of service. The Board also appoints three officers—the General Manager, General Counsel, and District Secretary, all of whom serve at the will of the Board.

Four executive staff members serve under the General Manager to manage and monitor all of the District’s essential functions—the Deputy General Manager, Chief Operations Officer, Chief Financial Officer and Chief Human Resources Officer.

The Board’s four standing committees oversee various responsibilities as follows:

Operations Committee. Responsible for reviewing and following through on policies and activities associated with District services and programs (including administration and operation). The Operations Committee monitors the implementation of items that are developed by the Planning Committee and approved by the Board of Directors.

Planning Committee. Responsible for reviewing all policies and activities associated with planning, including service the District provides to its customers, budgetary issues, and development of human resources. The Planning Committee deals with the “big picture.” Once the Board approves items to be implemented, the Operations Committee is responsible for follow-through.

External Affairs Committee. Responsible for reviewing all activities associated with marketing, customer service, relations with District advisory committees, legislation, public information, and dealings with other governmental agencies and private sector partners (employers, community groups, etc.) to promote the District’s interest.

Finance and Audit Committee. Responsible for reviewing all issues involving the District’s finances including, but not limited to, budget preparation, potential revenue sources, grants, and auditing services and activities (both internal and external), financial reporting, requests for proposals/awards of contracts/agreements (unless assigned to a “topic” committee), procurement of non-revenue service vehicles and buses, and service reductions and adjustments.

ENVIRONMENTAL JUSTICE AND SOCIAL EQUITY

AC Transit has a long-standing commitment to environmental justice and social equity, ensuring that District policies do not discriminate against any one community. Resolution 2033, authorized by the Board of Directors in 2002, affirms our commitment to the civil rights and environmental justice principles and values covered by the Civil Rights Act of 1964. This resolution assures that the needs of our community are fully considered in decisions pertaining to service design, policy, and operations with meaningful community involvement regarding these decisions. Even earlier, in 2001, the Board
adopted Policy 551, which created a blueprint for assessing impacts that service or fare changes may have on minority, low-income, and disabled communities.

TRENDS IN SERVICE AND RIDERSHIP

During Fiscal Year (FY) 2008/2009, the number of vehicles in our active fleet remained constant with previous years. The number of vehicles placed into the District’s fixed route service can fluctuate throughout the year depending on route changes, vehicle maintenance (scheduled and unscheduled), training, and other needs. The chart below shows the number of vehicles in our fleet as of June 30, 2009, and on the last day of each fiscal year reported. This number includes AC Transit’s peak requirement as well as other vehicles needed to keep service operational. The Paratransit Fleet refers to those vehicles that AC Transit owns and operates as part of the EBPC.

On a per capita basis, AC Transit has the highest bus ridership in California, after San Francisco’s Municipal Railway System. Ridership has remained relatively stable over the past five years and fluctuations are attributable to shifts in the economy and the price of gas. Last year, we did see a reduction in ridership to approximately 61 million passengers. The widespread economic woes, the high unemployment rate and housing foreclosures, coupled with lower gas prices during 2009 all contributed to reductions in our ridership. In order to more accurately assess our ridership going forward, AC Transit is in the process of installing automatic passenger counters. We have also responded by increasing our operational efficiency with programs like the Clipper card, which speeds loading times, and our EasyPass program, which allows us to encourage more ridership.

\[\text{Vehicle numbers represent a mid-year snapshot, at or near the end of the fiscal year ending in June, based on the maximum number of vehicles operated to provide service on an average weekday. Bus numbers fluctuate during each year (some buses are added/disposed/resurrected).}\]
Vehicle miles data are based on District records for all revenue vehicles in service, as reported in the District’s Ellipse data management system, based on dispatched vehicles for scheduled and unscheduled service miles. Para-transit vehicle miles and day trippers are excluded. The 2006 Environmental Sustainability Report used revenue miles data obtained from the National Transit Database (NTDB) report, which only included scheduled revenue and service miles for revenue vehicles in the bus fleet. Passenger Revenue Miles are obtained from the annual NTDB report. Average Passengers per Revenue Vehicle = (total passenger revenue miles) / (total vehicle miles)
OUR ENVIRONMENTAL FOOTPRINT

Over the past seven years, AC Transit has been tracking and reporting our environmental performance metrics including our fuel and energy use, emissions of GHGs and other major air pollutants, water use, waste management, and regulatory compliance. This transparent accounting of our environmental performance has fostered an awareness amongst our facility and operations managers that has lead to better management of our resources as evidenced by the drop in our electricity and water usage in 2009. This section highlights and summarizes our 2009 environmental footprint.

FUEL AND ENERGY USAGE

In 2009 and 2010, AC Transit continued to rely on diesel as our primary fuel source. With plans to purchase diesel-electric hybrids and expand the hydrogen fuel cell bus fleet, AC Transit’s reliance on diesel will diminish in future years. Gasoline and propane are used to a lesser degree for non-revenue vehicles, while natural gas and electricity at our office and bus yard locations meet our heating, cooling, lighting, and mechanical needs.

Vehicles

In 2010, our FleetWatch management system was fully operational. This system is a combination of hardware and software that provides real-time data for our revenue and non-revenue fleet. The upgraded FleetWatch system assists AC Transit in monitoring our fleet’s performance and helps improve our overall efficiency. FleetWatch allows us to track vehicle mileage, monitor fuel and engine fluid usage, schedule preventive maintenance, and identify leaks. Vehicle mileage and fuel usage data collected will be used to quantify our CO2, CH4, and N2O emissions in future GHG inventories. Having all of this information readily available allows us to not just manage our fleet more efficiently, but also reduces the time and cost of environmental tracking and reporting.

AC Transit continues to track diesel and gasoline fuel usage with ELLIPSE, our inventory management system. Diesel is used by most of our revenue fleet (buses and para-transit vehicles) and by some non-revenue vehicles. Gasoline and propane fuel are used only by non-revenue vehicles, such as automobiles and service vehicles, forklifts, and store room trucks. At AC Transit, we continue to diversify our bus fleet through the purchase of zero emission and hybrid vehicles. However, diesel still serves the vast majority of our needs. Total annual diesel consumption decreased by approximately 1.2 percent during 2009—resulting from the use of more fuel efficient vehicles and operational efficiencies—while total gasoline use increased by 9.7 percent.
In June 2008, in an effort to reduce fuel consumption and reduce filter plugging, AC Transit initiated a five-minute idle on the newer Van Hool buses (1200, 2000, 2100, 5100, and 5100 series). As a result, these buses automatically shut down after five minutes when not in operation. During 2009 and 2010, this automatic shut down was expanded to include all buses for which the technology is viable. The District has seen a significant improvement in fuel economy as a result of this effort.
Facilities

As detailed in our report last year, AC Transit has taken significant steps over the past few years to reduce our impacts associated with energy use. Since our energy needs consist primarily of electricity use and natural gas consumption, we have focused on increasing energy efficiency at our facilities and offices, and expanded our installation of photovoltaic systems to provide GHG emissions-free solar power. Information regarding our energy efficiency and solar power projects are described in the Reducing our Footprint section of this report.

As shown in the charts below, total electricity decreased from 2008 to 2009 by 15.6 percent. In fact, the 2009 electricity usage is the smallest since 2004, when we began closely tracking our electricity usage. This decrease is largely a result of AC Transit’s lighting retrofit projects and the facility improvements.

In 2009, electricity usage dropped at all but two AC Transit locations. The 66th Avenue facility saw an increase for the year of 12.1 percent. Electricity usage at Eastmont Transit Center (ETC) also rose by less than 1 percent. These increases are due to normal fluctuations in operations. Major decreases were observed at Emeryville Yard (D-2) 22.9 percent, Hayward Yard (D-6) 30.5 percent, and Richmond Parkway Transit Center (RPTC) 39.6 percent.
Although natural gas usage remained relatively flat at nearly all facilities, as shown in the figure above, our total annual consumption of natural gas increased slightly (by approximately 2 percent) from 2008 to 2009 (see figure below). In 2009, Central Maintenance Facility, Oakland (CMF), D-2, and Richmond Yard (D-3) decreased their natural gas consumption by between 4 percent and 14 percent each. There was a small increase in consumption at Corporate, but the largest single increase we saw in 2009 was at the Seminary Yard, Oakland (D-4) facility. This increase in natural gas usage was the result of increased production of hydrogen to support the HyRoad program.
In 2010, AC Transit reported our 2009 CO2 emissions to The Climate Registry (TCR), marking the fourth consecutive year of publically reporting our CO2 emissions. In 2007, AC Transit joined TCR, a non-profit organization that encourages and supports early actions to reduce GHG emissions across North America. AC Transit began our public GHG reporting efforts with our CY2006 submittal to the California Climate Action Registry (California Registry). The California Registry named AC Transit a “Climate Action Leader” after each of our 2006, 2007, and 2008 GHG emissions inventories were successfully verified by a third party. Verification of our 2009 TCR emissions report is nearly complete.

CO2 is the primary GHG resulting from District operations, due largely to the burning of fossil fuels to power our vehicles. In 2009, our annual CO2 emissions decreased approximately 1.6 percent, due primarily to a drop in diesel consumption and a significant drop in electricity usage. Direct emissions from fleet diesel usage still remain the largest contributor to our CO2 footprint. Lesser contributors include emissions from fleet gasoline and indirect emissions from imported electricity and natural gas. The percent contribution from each major source to total CO2 emissions has remained steady since data collection began in 2004.
The pie chart shown as Figure 1 summarizes the distribution of District emissions by source for 2009. Mobile fuel use (diesel and gasoline) represent roughly 93 percent of the total emissions inventory. The next largest category relates to electricity and stationary combustion (natural gas usage in buildings) at 4 percent and 3 percent of the inventory, respectively. *De minimis* emissions, which make up approximately 0.1 percent, are primarily from compressed gas for maintenance equipment, such as propane used by forklifts and a small amount of diesel to power stationary generators. The table below demonstrates that the distribution is consistent with previous years for all significant sources.

<table>
<thead>
<tr>
<th>Emmission Category (Source)</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>% change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct Mobile (combustion engines)</td>
<td>64,246</td>
<td>67,337</td>
<td>69,598</td>
<td>68,838</td>
<td>-1.10%</td>
</tr>
<tr>
<td>Imported electricity</td>
<td>2,438</td>
<td>2,289</td>
<td>3,074</td>
<td>2,613</td>
<td>-17.62%</td>
</tr>
<tr>
<td>Direct Stationary (Natural gas furnaces & water heaters)</td>
<td>1,965</td>
<td>2,131</td>
<td>2,060</td>
<td>2,104</td>
<td>2.07%</td>
</tr>
<tr>
<td>Imported electricity (leased office space)</td>
<td>-</td>
<td>-</td>
<td>28.04</td>
<td>28.7</td>
<td>1.03%</td>
</tr>
<tr>
<td>Direct Mobile (emergency generators)</td>
<td>134</td>
<td>54.1</td>
<td>29.7</td>
<td>29.7</td>
<td>0.00%</td>
</tr>
<tr>
<td>Direct Mobile (forklifts)</td>
<td>18</td>
<td>8</td>
<td>6.4</td>
<td>4.9</td>
<td>-31.76%</td>
</tr>
<tr>
<td>Direct Stationary (compressed gas-machining)</td>
<td>0.02</td>
<td>0.23</td>
<td>0.02</td>
<td>0.06</td>
<td>65.36%</td>
</tr>
<tr>
<td>Direct Stationary (acetylene torches)</td>
<td>0.07</td>
<td>0.02</td>
<td>0.24</td>
<td>0.24</td>
<td>0.00%</td>
</tr>
<tr>
<td>ALL SOURCES</td>
<td>68,801</td>
<td>71,819</td>
<td>74,797</td>
<td>73,619</td>
<td>-1.60%</td>
</tr>
</tbody>
</table>
In the 2011 TCR emissions report, AC Transit will report GHG emissions from all six Kyoto gases: CO2, nitrous oxide (N2O), methane (CH4), perfluorocarbons (PFCs), hydrofluorocarbons (HFCs), and sulfur hexafluoride (SF6). Preliminary analysis indicates that of the five additional GHGs, only HFCs (resulting from the refrigerant we use in vehicle and office air conditioners) are significant in terms of our total GHG footprint.

Fleet Emissions

Air quality is a top environmental concern in the heavily populated Bay Area. Motor vehicles are a major source of airborne particulates and smog-producing pollutants such as ozone and nitrogen oxides. Diesel engines in particular have long been a major source of emissions, including particulate matter (PM) and smog-forming oxides of nitrogen (NOx). AC Transit has dramatically reduced our PM and NOx emissions over the past few years, largely due to the introduction of newer engines, improved exhaust-control technologies, and the availability of cleaner-burning diesel fuels. The year 2007 saw the introduction of advanced engines that take full advantage of newly available ultra-low sulfur diesel (ULSD) fuel and deploy state-of-the-art technology in engine management, fuel injection, emissions reduction, and turbo-charging innovations. These developments enable AC Transit to continue our record of reducing harmful PM and NOx emissions.
California Air Resources Board Compliance

As a public transit agency, AC Transit must comply with California Air Resources Board (CARB) rules for exhaust emission standards. The two primary rules affecting AC Transit are the Urban Bus Rule for heavy-duty vehicles (usually 35-feet or longer and/or greater than 33,000 pounds gross vehicle weight rating) and the Transit Fleet Vehicle (TFV) Rule for smaller vehicles. Both rules require emissions reductions in Particulate Matter (PM) and oxides of nitrogen (NOx), while CARB’s limits for PM and NOx are currently equal to the federal U.S. Environmental Protection Agency (EPA) rule. To comply with CARB and federal EPA standards, the District continues to replace older bus engines with advanced low-emissions engines, while retrofitting existing buses with PM traps and NOx-reducing catalysts.

Urban Bus Rule

The CARB Urban Bus Rule, which has been in effect since February 2000, places strict limits on PM and NOx emissions for all new engines. The Rule requires that transit operators choose a fuel path (diesel or alternative), which in turn affects bus purchases and dictates emission reduction deadlines. AC Transit is on the diesel fuel path. Under the Zero Emission Bus element of the Fleet Rule, public transit providers operating 200 or more buses must participate in zero emission bus demonstration projects. To date, AC Transit—in partnership with Golden Gate Transit—has completed a first-stage, three-bus zero emission demonstration. Working with three additional transit operators in the Bay Area (VTA in San Jose, SamTrans on the Peninsula, and Muni in San Francisco), the District is well under way with an advanced demonstration project that includes 12 next-generation, zero emission buses. For a complete description of these demonstration projects, see “Our Initiatives” section below.

The Urban Bus Rule has required California fleets to use or switch to Ultra-Low Sulphur Diesel (ULSD) fuel since July 2002. AC Transit began using ULSD in January 2002, six months prior to the state requirement. ULSD contains 97 percent less sulfur than low-sulfur diesel, thus permitting the use of improved exhaust treatment devices to reduce PM and NOx.

For total fleet PM, the CARB Rule sets a schedule of reduction targets on a January 2002 baseline, with a goal of 85 percent reduction by January 2007. We successfully exceeded that requirement. On December 31, 2010, we were at 9.465 grams per brake horsepower per hour (g/bhp/hr), an overall reduction in our fleet’s PM emissions by over 94 percent.
The Urban Bus Rule for NOx went into effect in October 2002, setting the fleet’s average upper limit at 4.8 g/bhp/hr. AC Transit came into compliance with this requirement on May 1, 2003. Over time, the NOx rule sets standards for new engine purchases that are increasingly stringent. However, CARB-compliant engines have not been available from suppliers until recently, making compliance problematic. Engine manufacturers have failed to meet the 2004 and 2007 NOx limits of 0.5 and 0.2 g/bhp/hr, respectively. In the absence of approved engines, CARB has allowed AC Transit and other urban bus fleets to pursue alternative means for reducing NOx. Our CARB-approved 15-year plan demonstrates how—through a mix of new bus purchases and installation of NOx-reducing catalyst devices on older buses—we can comply with the baseline requirement. As new engines become available, AC Transit’s NOx reductions will continue to improve. A key element of our plan for improvement in this area, all new buses purchased by AC Transit will meet or exceed the 0.2 g/bhp/hr emissions rate.

Note: Values for 2010 through 2015 are projections. Average NOx is calculated using manufacturer’s data for engines and exhaust treatment devices.
Transit Fleet Vehicle Rule

The CARB Transit Fleet Vehicles (TFV) Rule for smaller diesel vehicles took effect on February 24, 2005. As of December 31, 2009, AC Transit had a total of 98 TFV vehicles. (This includes a 30-foot Van Hool gasoline hybrid bus).

The TFV Rule sets a maximum NOx fleet average of 3.2 g/bhp/hr by December 2007 and 2.5 g/bhp/hr by December 2010. AC Transit’s baseline was 4.3 g/bhp/hr in January 2006, and we met the December 2007 requirement with the addition of new 30-foot Van Hool buses. In 2008, we took delivery of another 38 Van Hool 30-foot buses (5100 Series) that fall into the TFV category. In 2009, one additional bus was acquired that falls into the TFV category.

For total fleet PM, the TFV Rule requires reductions (using a January 2005 baseline) of 40 percent by December 2007 and 80 percent by December 2010. Our 2005 baseline of 5.8 g/bhp/hr roughly doubled to 11.2 in 2007 with the addition of the new Van Hools. In October 2010, AC Transit filed for a second annual extension with CARB, since no verified PM control device will fit into the 51 Van Hool buses purchased by the District in 2006. AC Transit is actively pursuing alternative approved devices for these buses.

U.C. Berkeley Fleet

AC Transit leases several buses to the University of California, Berkeley (U.C. Berkeley). While the District does not have operational control over the U.C. Berkeley Fleet, we own the buses and therefore must comply with a CARB rule for public agencies and utilities requiring the use of “best available control technology” (BACT) to reduce NOx and PM. AC Transit has met all compliance deadlines to date, along with the December 31, 2010, requirement that 60 percent of our fleet engines use BACT. By the end of year 2011, AC Transit will have installed BACT on all buses in the U.C. Berkeley Fleet.

WATER USE

Bus washing continues to account for the largest portion of District water consumption. In 2009, our water usage was the lowest since we began closely tracking our usage in 2004. We realized a 5 percent decrease between 2008 and 2009. Significant drops of 35 percent and 45 percent were noted at the District’s Emeryville D-2 and Richmond Yard (D-3), respectively (see figure below).

During 2008 and 2009, the District implemented a conservation plan that included monitoring monthly water use, reducing the bus washing frequency, and relying on techniques to reduce the volume of water required during the process. In 2009, AC Transit also participated in EBMUD’s voluntary water reduction program (due to drought in 2009).

4 Four New Flyer buses (model 2400, 35-footers) and six Gillig buses (model 2800, 40-footers).
Our Waste Streams

In addition to our standard municipal waste (such as paper, cardboard, glass and plastic), AC Transit also produces some waste streams that are classified as “hazardous” which are tracked separately.

Our most hazardous wastes are regulated under the Resource Conservation and Recovery Act (RCRA), which gives the EPA the authority to control hazardous waste and also sets forth a framework for the management of non-hazardous solid wastes. Only a small portion of the waste we generate is covered by RCRA. In year 2009, this represented less than one percent of our hazardous waste generation. Our largest waste stream is used oil from bus maintenance that is recycled by a third party.

Our RCRA waste, as a percentage of total manifested waste, has remained low since 1999, when we removed our solvent parts washer units in response to stricter regulation by the Bay Area Air Quality Management District (BAAQMD). Last year was our lowest contribution recorded since we began tracking, only 0.9 percent of total hazardous waste produced by AC Transit in 2009 was RCRA waste.
In year 2009, we saw an increase in the total amount of hazardous waste generated, as compared to the previous year as well as our five-year average. As shown in the chart above, our waste stream can fluctuate dramatically. The fluctuations are generally attributable to variations in the amount of liquids that we must dispose of, as these materials tend to weigh more than most solid wastes and therefore introduce greater effects to overall reported tons of hazardous waste.

The uptick in total waste in year 2009 is reflected at the facility level, where each facility - with the exception of D-2, saw a slight increase in manifested hazardous waste. The largest increases were observed at D-3 and D-4, and are generally associated with increased generation of liquids and sludge from maintenance of oil-water separators.
In addition to used motor oil, AC Transit recycles used oil filters, vehicle batteries, alkaline batteries, fluorescent tubes, used tires, electronic equipment, graffiti shields, scrap metal, and wood pallets (see the section, Minimizing Our Waste, of the report for further details). Fluorescent tubes used in buses represent a significant universal waste stream due to the high replacement rate. Since we began tracking in 2004, AC Transit has recycled just over 24 tons of used fluorescent tubes.

REGULATORY COMPLIANCE

AC Transit operations are under the oversight of numerous regulatory agencies to ensure compliance with various environmental rules and regulations. Our 2009 regulatory compliance activities included:

- Underground storage tank and fuel pump inspections;
- Stormwater monitoring and reporting;
- Wastewater monitoring and reporting;
- Air emissions permitting activities, and
- Groundwater monitoring and reporting.

INSPECTIONS

In 2009, AC Transit was subject to inspections from local and state agencies, including the BAAQMD, Contra Costa and Alameda County Health Departments; and the Oakland and Hayward Fire Departments. The BAAQMD inspected each of the unleaded gasoline pump sites (D-2, D-3, D-4, D-6 and CMF) and found no operating permit violations. AC Transit successfully completed the annual underground storage tank (UST) monitoring certifications at D-2, D-3, D-4, D-6, CMF and the General Office. In order to meet UST certification requirements and training, inspectors verify all electronic monitoring components, review calibration records, and ensure that all record keeping and training procedures are implemented and maintained properly. The successful certifications indicate that our systems and procedures are adequately managing our USTs to prevent and detect environmental releases.

Stormwater Monitoring

In accordance with California’s General Industrial Stormwater Permit requirements, AC Transit regularly examines potential sources of pollutants in stormwater discharges during monthly yard walks and inspections. Stormwater discharges were sampled at five sites (CMF, D-2, D-3, D-4, and D-6) in 2009. Exceedances of any stormwater discharge benchmark levels were addressed by conducting a detailed review and investigation by our staff and developing corrective actions. The results of these actions were forwarded to the appropriate oversight agency. Exceedances and corrective actions taken in 2009 are described below. For those exceedances that we were unable to determine a conclusive cause of the event, we commit to monitoring the site with increased diligence.
CMF exceeded the EPA benchmark level for specific conductivity in the sample collected from the discharge that exits the main driveway during the first rain event of 2009. Elevated specific conductivity levels are most likely a direct result of soaps and detergents that enter stormwater runoff. The high specific conductivity level in the sample from the main driveway could have been caused by past spillage at the loading dock or residuals left on the pavement from outdoor washing. All other sample results (suspended solids, pH and oil and grease) were below their respective EPA benchmark levels.

D-4 exceeded the EPA benchmark level for specific conductivity in one sample and suspended solids in a different sample. As previously mentioned, elevated specific conductivity levels can typically be attributed to outdoor use and/or storage of detergents. High levels of suspended solids are associated with dust and dirt that accumulates on outdoor surfaces during the dry season.

Both D-2 and D-3 reported minor issues with high specific conductivity levels, most likely a direct result of soaps and detergents that get on outdoor surfaces and are washed down during a rain event. The Store Room delivery area in the rear of the Maintenance Building was identified in the annual report as an area that requires improved Best Management Practices through the use of spill containment pallets.

Wastewater Discharge

Our wastewater regulatory compliance activities are tracked and reported annually as part of our suite of environmental compliance requirements. In general, AC Transit saw very few violations in 2009 associated with wastewater discharges. The facility-level issues are summarized as follows:

D-2: All seven wastewater samples collected (four by East Bay Municipal Utility District [EBMUD], three by AC Transit), were found to be in compliance with permit conditions.

D-3: AC Transit collected monthly samples at two discharge locations at this facility. This was the first year since 2005 that there were no zinc exceedances. However, we did have the following two exceedances (out of 24 sample events, eight percent of samples collected):

1. 870 part per million (ppm) of total suspended solids in a sample collected at the dynamometer discharge site on January 6, 2009; the permit limit is 300 ppm, and
2. 227 ppm oil and grease exceedence at the dynamometer discharge site on April 9, 2009, above the permit limit is 100 ppm.
While our investigation was unable to conclusively determine the exact cause of these events, we have increased our monitoring at this facility.

D-4: In 2009, we collected six samples from side sewer #3 (fuel island) and 12 samples from side sewer #4 (Maintenance Building). Only one sample of 18 collected exceeded the permit limit of 100 ppm for oil and grease. The sample collected from side sewer #4 in February, had an oil and grease concentration of 220 ppm. Based on our review, it appeared that some oil was soiled near a wastewater drain by Division Maintenance personnel. In response, we plugged these drains so that no oil can be discharged to the sewer.

D-6: In 2009, semi-annual testing of two discharge locations by AC Transit personnel and eight total sample events (undertaken by City of Hayward) resulted in no permit violations.

CMF: Samples taken at this facility were in compliance with the discharge permit. In total, there were eight samples collected (four by EBMUD and four by AC Transit).

Air Quality

AC Transit maintains several air quality permits including five unleaded gasoline dispenser air permits and others as follows:

- Air permits for two diesel fire pumps and one backup generator for the General Office at Franklin Street,
- Air permits for two diesel generators at D-6,
- Air permits for two diesel generators at D-2,
- Air permits for one diesel generator each at CMF, D-3, and D-4.

The District has paint booth air permits at each of the following facilities: D-6, D-4, D-3, and D-2. Three permitted paint booths are also located at CMF. During 2009, AC Transit met all compliance requirements.
In 2009, AC Transit elected to prepare a district-wide Climate Action Plan to address our long-term emissions forecasts and establish a plan to reduce our GHG emissions in the most efficient and cost-effective manner possible. Much like the state of California, there are a number of issues involved in projecting our emissions levels and reduction potential over the next decade.

The emergence of California GHG regulations will likely affect the price and carbon intensity of fuels purchased. This means that we will likely see GHG emission reductions on a per fuel-unit basis. Some likely technologies and policies at play here are the low carbon fuel standard (which will allow greater transparency in the GHG emissions associated with all fuel types), and the hydrogen-fueled bus projects that we are undertaking in partnership with a number of other regional transit agencies. However, even with these measures emerging, we are still planning for further internal actions to reduce our direct GHG emissions and regional emissions. Some of these measures involve maximizing our vehicle trips by encouraging ridership increases, making it easier for multi-modal travel, and integrating our bus stops into the urban environment by providing easy on-off access, and providing real-time tracking of bus arrival times.

Other endeavors that we are implementing are focused on our buses and other facilities. For our bus fleet, we have recently entered the second phase of our hydrogen bus project and continue to evaluate ways to improve our facilities’ energy use and waste generation. From solar panels on the roofs of our facilities, to recycling our used motor oil, AC Transit is constantly looking for opportunities for improvement.

Our Board of Directors adopted the Climate Action Plan in February 2010. It unveils our long-term plan for reducing our GHG emissions while improving the quality of our service. We have chosen to not sit idle while working on this plan; we have highlighted a number of our actions below, and we will continue to evaluate and implement additional measures as they become feasible.

HyRoad/ZEBA

Since February 2000, the Fleet Rule for Transit Agencies has been the centerpiece of CARB’s effort to reduce both criteria pollutant emissions and exposure to toxic air contaminants from urban buses and transit fleet vehicles. The Rule requires that transit operators choose a fuel path (diesel or alternative), which in turn affects bus purchases and dictates emission reduction deadlines. AC Transit is on the diesel fuel path and (among other emissions reduction requirements) must participate in zero emission bus demonstration projects.
We are pleased to report that our first demonstration project phase, known as Hy-Road, has been completed. Working in partnership with Golden Gate Transit, we have successfully operated three hydrogen-fueled buses since 2006. During this time, we generated our hydrogen fuel through steam methane reformation. Natural gas from PG&E was fed to a steam reformer that produces a hydrogen-rich gas. This gas, called reformate, is composed of 75 percent hydrogen and 20 percent carbon dioxide and other trace gases which compromise the remaining five percent. The reformate is compressed and purified for use in the fuel cell buses.

During the next phase of our program, we will be working with the Bay Area’s largest bus transit operators (San Francisco Muni, SamTrans in the Peninsula, Golden Gate Transit in Marin, and Valley Transportation Authority in San Jose) to establish a truly regional program, representing the interests of agencies with a combined fleet of more than 2,500 buses.

The next phase of this program will involve twelve next-generation, zero emission hydrogen buses. Seven of the twelve next-generation buses are currently in service. The remaining buses are expected to arrive by mid-June 2010. A key element of this phase is our new hydrogen fueling station in Emeryville, scheduled to open in early 2011. Hydrogen at the new fueling station will be generated from two different sources. An electrolyzer indirectly powered by a solar system installed at AC Transit’s Central Maintenance Facility will generate hydrogen. However, in order to meet our fuel production requirements, some liquid hydrogen will also be delivered by an outside vendor that generates the hydrogen through steam methane reforming.

The next-generation buses developed for this phase of the project feature a number of design improvements in order to reduce vehicle weight (by approximately 5,000 pounds) and improve overall rider comfort and vehicle performance. To improve the energy storage systems, these buses will feature lighter, more energy-efficient, and more reliable lithium-ion batteries that will be cooled by more efficiently designed cooling systems and onboard hydrogen storage system. The buses themselves will also have better weight distribution throughout the bus to improve the on-road vehicle performance, ride, and handling. And just as importantly, all of these features are to be integrated during the initial vehicle manufacturing process. This systems integration by the bus manufacturer (as opposed to using a third party integrator) will result in easier to maintain components and networks and improved reliability and durability. In addition to the GHG reduction benefits of fuel cell buses, a University of California, Davis (UC Davis) study has shown that use of hydrogen fuel instead of fossil fuels can improve ambient air quality. The UC Davis study evaluated the air quality impacts of hydrogen versus gasoline use in light duty vehicles. This study found that the examined gasoline pathway, even with advanced new gasoline vehicles, leads to much higher ambient concentrations of pollutants than the hydrogen pathways.
Solar Power

In 2009, AC Transit’s solar power system generated 749 MWh of GHG emissions – free energy. In 2006, AC Transit began our partnership with Sunpower, PG&E, and MMA Renewable Ventures to install solar power systems consisting of 2,728 photovoltaic panels on seven rooftops at two of our facilities: Hayward (D-6) and Oakland (D-4). Between April 2007 and the December 2009, the AC Transit systems generated just over 2,075 MWh of energy. In 2009, electricity from solar represented approximately 36 percent of the total used at D-6 and 13 percent of the total at the Oakland D-4 facility. Although the District does not own the panels at D-6 and D-4 (and thus will not earn credit for GHG emission reductions), the AC Transit agreement increases California’s supply of renewable energy, reduces regional GHG emissions, and reduces demand on the local power utility. After the six-year power purchase agreement expires in 2012, AC Transit plans to purchase the solar systems.

In late 2010, a contract was awarded to Cupertino Electric to install a new solar system at our CMF in Oakland. This system will indirectly offset approximately one-third of the energy the District needs to power its next-generation hydrogen fueling station. The CMF system will be installed using funding from the grant received under the Transit Investments for Greenhouse Gas and Energy Reduction (TIGGER) program. The system will use cylindrical modules to capture sunlight across a 360-degree photovoltaic surface capable of converting direct, diffuse, and reflected sunlight into electricity. The CMF system will more than double our solar-generating capacity.

Minimizing Our Waste

AC Transit initiated our recycling and waste reduction efforts over a decade ago, when a group of employees at our Central Office in Oakland voluntarily formed a Recycling Committee. With the help of a grant from Alameda County’s STOPWASTE program, the committee began to recycle office waste, including paper, cardboard, bottles, cans, ink cartridges, household batteries, e-waste (computer peripherals), and even eyeglasses. By 2007, the committee had expanded these programs to every AC Transit division office, recruiting point persons to ensure optimum implementation at each location. Other items recycled on an ongoing basis include oil filters, used motor oil, vehicle batteries, fluorescent tubes, used tires, electronic equipment, graffiti shields, scrap metal, and wood pallets.

2009 marked another successful year for the recycling program. During 2009, AC Transit significantly increased the volume of material recycled over 2008 as shown in the figure below.\(^5\)

\(^5\) The recycled material volume does not include the Richmond Division (D-3) because pick-up of recyclables is incorporated with the municipal waste management services.
The tonnage of paper, cardboard, and aluminum cans recycled in 2009 increased more than 80 percent over the weight recycled in 2008. Based on EPA’s Waste Reduction Model (WARM) the volume of material recycled in 2009 resulted in a reduction of 350 metric tons of GHG emissions over of the baseline scenario of landfill disposal.

All AC Transit facilities increased the volume of materials recycled by at least 39 percent between 2008 and 2009. D-2 and CMF saw the largest increases in recycled material weights, at 150 and 107 percent, respectively. The recycled material weights by facility are shown in the figure below.
During 2009, AC Transit donated 75 pieces of computer equipment to the Oakland Technology Exchange West (OTX West) including CPUs, laptops, scanners, printers, and monitors. OTX West, which is dedicated to eliminating the digital divide in Oakland, California, teaches basic computer skills to adults and children, and provides ongoing technical support free of charge. The organization engages in environmentally sustainable re-use, by refurbishing donated personal computers and other technological equipment for students who successfully complete the OTX training class.

Education and communication continues to be a key part of the Recycling Committee’s efforts. The committee meets monthly to discuss challenges, examine new recycling possibilities, and share best practices among operating divisions. Additionally, throughout the year, the committee sponsors community recycling days at Health and Safety Fairs hosted by each division.

Facility Lighting Retrofits

Since 2005, AC Transit has been conducting energy audits at many of our facilities to identify opportunities to reduce consumption and operating costs by replacement of inefficient lighting. In 2009, AC Transit has completed lighting retrofits at all major facilities.

Our 2009 electricity usage dropped over 15 percent from 2008 due in large part to our lighting retrofit projects. Moving forward, we are continuing to evaluate our energy use in order to continually improve the efficiency of our operations.

Facility Improvements

During 2008 and 2009, AC Transit undertook a number of facility improvements that resulted in energy consumption reductions including installation of occupancy sensors; thermostat timers; new doors, heating, ventilating and air conditioning (HVAC) units and roofing. In 2010, AC Transit purchased exterior lighting upgrades at multiple facilities, including energy-efficient Light Emitting Diode (LED) and Compact Fluorescent Lights (CFL), as well as bi-level exterior lights. These bi-level lights provide reduced lighting when not needed and full light when vehicles or people are detected in the vicinity. When installed in early 2011, the lighting upgrades will reduce AC Transit’s energy at these locations. Additionally, our new bus painting booth has a number of energy-saving features. The lights are all T-8 electronic ballast (40 percent more efficient than the old T-12 lamps) and will automatically shut off when it detects that there is no activity in the booth. During curing times, the lights will also dim to the lowest feasible level. Beyond the energy-saving aspects, this booth is also equipped with modern features that will reduce our impacts to air quality. The gas fired heaters are also significantly more efficient than the 25-year old equipment that it replaced.
Regional Climate Action Planning

In addition to preparing our own Climate Action Plan, during 2009 and 2010, AC Transit worked closely with Oakland, Berkeley, and Alameda County in the development of their Climate Action Plans. We have also worked with Hayward and other jurisdictions to a lesser degree in developing their Climate Action Plans. Municipalities are preparing Climate Action Plans that seek to identify and facilitate implementation of a broad range of measures to reduce local emission of GHGs. With financial support from the Alameda County Transportation Improvement Agency (ACTIA), every city in Alameda County has prepared or is in the process of preparing a Climate Action Plan. Some jurisdictions in Contra Costa County are also preparing Climate Action Plans.

Reduction of emissions from transportation—in part by switching from single-occupant vehicles to public transit—is one part of all of these plans, and AC Transit has been participating in their formulation and development. The District has provided background information, review, and comments, and we have consulted with cities on implementation strategies. The District anticipates doing more of this work in the future, and continues to participate in the joint ACTIA/CMA (Alameda County Congestion Management Agency) Climate Action Working Group, which is developing countywide approaches to these issues.
PROMOTING PUBLIC TRANSPORTATION

The emerging regulatory requirements of SB 375, along with AB 32 and SB 97, have brought transit agencies to the forefront of sustainability. While SB 97 and AB 32 have solidified the status of GHG emissions as an environmental impact that must be addressed, it is the requirements of SB 375 that may have the largest long-term impact on AC Transit’s operations. One of the most germane requirements of SB 375 is the development of a Regional Transportation Plan (RTP), which will set a region-wide approach for meeting GHG reduction targets while planning for the Bay Area’s housing and transportation needs.

As we move towards a sustainable transportation system, AC Transit realizes that cooperation between local agencies and residents will be a key element in developing transit designs that work for everyone. Along with our stakeholders, AC Transit is confident that we can achieve significant reductions in GHG emissions through urban and suburban development patterns that are compact, transit oriented, and pedestrian-friendly. Regional GHG emissions are significantly reduced when public transit is used rather than personal vehicles. As public transit ridership increases in the Bay Area, the regional GHG emissions will decline. The sections below highlight AC Transit’s continued efforts to promote public transportation and increase our ridership.

Supporting Transit-Oriented Developments

Supporting Transit-Oriented Development (TOD) continues to be a key part of AC Transit’s approach to community planning. The most productive corridors in our system—with the highest level of use and the least reliance on external subsidy—tend to be located in areas with greater population density and a higher degree of dependence on public transit. Service design policies that emphasize productivity tend to reward higher-density urban development and have impacts that are economically progressive. In most cases, recommended improvements to the network will have a direct and positive effect on neighborhoods with the highest concentrations of low-income households. To date, San Pablo Avenue, Telegraph Avenue, and University Avenue have been the most active development corridors.

The most far-reaching of the TOD efforts is the Sustainable Communities Strategy now being developed by the MTC and the Association of Bay Area Governments (ABAG). The strategy, mandated by California’s AB 32 climate change legislation, will describe how the nine Bay Area counties will develop in a more sustainable, transit-friendly way to reduce vehicle miles traveled and emissions. AC Transit is participating in the Regional Advisory Working Group (RAWG) for this groundbreaking document.

Despite an extremely difficult climate for housing development, some East Bay TOD continued, particularly in Oakland, Berkeley, and Emeryville. In Berkeley, the “Fourth
and U” project at 4th Street & University Avenue became the first project where each unit received an AC Transit bus pass, as a condition of the project being approved. This project can serve as a model for others in Berkeley and elsewhere. Construction also began at both the Union City intermodal BART station, where AC Transit played an important planning role, and the MacArthur BART (Oakland) transit village. Many communities—including Richmond, Berkeley, Oakland, San Leandro, and Fremont—continue to plan for transit-oriented development, so that they will be prepared to act when economic conditions improve.

Other planning activities include participation in the refinement of San Leandro’s TOD strategy and the development of two specific plans for the Lake Merritt and Upper Broadway areas of Oakland. Oakland has also launched the International Boulevard Transit Oriented Development Plan to support TOD along the planned route of AC Transit’s Bus Rapid Transit project. AC Transit is part of the Technical Advisory Group for the zoning update to Oakland’s commercial corridors that could facilitate significant TOD development.

Another important focus for TOD planning is the ABAG (Association of Bay Area Governments) Priority Development Area (PDA) program. Under the PDA, cities themselves nominate locations where higher-density development should occur, with ABAG reviewing each area for eligibility. We have also actively participated in the development of a transit-supportive General Plan in Emeryville and a specific plan for the San Pablo Avenue transit corridor shared by El Cerrito and Richmond. In addition, the City of San Pablo has begun a General Plan update.

The goal is to focus planning resources and limited capital funding on areas that make up a small percentage of Bay Area land, but a much larger percentage of Bay Area development with TOD potential. Cities in the AC Transit district have designated 26 PDAs, more than in the service areas for San Francisco Muni, VTA, Golden Gate, or SamTrans. Every city in the AC Transit district, with the exception of Albany and Piedmont, has either designated its own PDA (or PDAs) and/or is included in the West County Transportation Advisory Committee (WCCTAC) multi-jurisdictional PDA along the Contra Costa County portion of San Pablo Avenue.

Rapid Bus

AC Transit current operates Rapid Bus service on our 1R and 72R lines. Rapid Bus service incorporates wider-stop spacing, low-floor buses, and signal priority to improve speed and reliability, qualities critical to enhancing transit-oriented development. The 1R and 72R lines run every 12 minutes during weekdays from 6:00 a.m. to 7:00 p.m.. A C Transit’s survey of recent and planned development along the San Pablo corridor revealed that some 60 projects—and most include housing—have been initiated since Rapid Bus line 72R was introduced in 2003.
TransLink® & Clipper

Over the past several years, the cities of Oakland, Berkeley, and San Leandro have been working to establish Bus Rapid Transit Service (BRT) to alleviate traffic congestion and improve system reliability. BRT is a form of low cost, high-speed, high-quality bus transit. BRT operates on separate rights-of-way, such as dedicated lanes in a roadway or a separate busway, which allows for faster, more reliable travel. Like Rapid Bus, BRT spaces bus stops farther apart, uses transit-signal priority, and generally employs low-floor buses. BRT may also collect fares under a proof-of-payment system.

AC Transit is currently completing a Final Environmental Impact Study on a proposed BRT system to serve the cities of Berkeley, Oakland, and San Leandro. BRT service—which would operate along Telegraph Avenue, International Boulevard, and the East 14th Street corridor—would include dedicated bus lanes, raised boarding platforms, attractive street furniture and sheltered waiting areas, pre-paid fare collection, and other amenities. When the BRT corridor is implemented, AC Transit anticipates significant growth in ridership.

TransLink® and Clipper TransLink® was introduced as a pilot program in 2002 by the MTC to reduce the number of separate fare systems and help integrate transit systems in the Bay Area. AC Transit and Golden Gate Transit were the first agencies to implemented TransLink® program. The TransLink® program, now known as ClipperSM, has been fully adopted by AC Transit, Muni, BART, Caltrain and Golden Gate Transit. The Clipper program will eventually be expanded to all transit agencies in the Bay Area.

ClipperSM is an all-in-one transit card that keeps track of any passes, discount tickets, ride books and cash value that you load onto it, while applying all applicable fares, discounts, and transfer rules. This lets you customize your card for your own transit needs. With a Clipper or a TransLink® card, you can:

- Stop carrying multiple forms of payment (exact change, tickets, or passes);
- Automatically add value when your card balance is low, with the Autoload feature;
- Replace registered cards and restore the card’s balance for a small fee, if your card is lost, damaged, or stolen; and
- Get on the bus faster.

In September 2009, AC Transit also began the transition to a paperless ticket system by replacing all paper fare media with Clipper cards.

AC Transit participated extensively in a special MTC program known as “TransLink®
for TOD” or “T4T,” intended to introduce more people to transit while enabling us to learn more about Transit-Oriented Development residents’ travel patterns. Under the program, residents in new/rebuilt developments in downtown Oakland, East Oakland, Emeryville, Berkeley, and elsewhere received TransLink® cards that had a pre-paid AC Transit pass already loaded on the card. The special cards offered residents a year of unlimited free travel on our local and transbay buses. In June of 2010, the results of the pilot project were published and are summarized as follows:

- Almost half of the participants reported riding AC Transit buses more during the program than before.
- The number of market-rate participants who used AC Transit five or more times a week almost doubled.
- T4T reduced automobile trips by about one trip per week per participant.
- One-quarter of the participants in market rate housing added their own funds to their TransLink® cards after the completion of the free period.
- Approximately 20 percent of participants reported using transit more after the program than before. The groups most likely to use transit more after the program were those aged 25-34 years old, in market-rate housing, with their own cars.
- T4T reduced GHG emissions by an estimated eight pounds per participant per week, at an estimated cost of 47 cents per pound.

EasyPass

The AC Transit EasyPass program offers qualified employers, residential communities, and colleges in the AC Transit service area with a discounted unlimited transit pass valid on all local and transbay buses.

AC Transit’s first “universal” discounted pass program began in 1999 with the UC Berkeley Class Pass. The next programs, the City of Berkeley Eco Pass and the UC Berkeley Bear Pass, began in 2001 and 2004, respectively. The program has since been standardized and branded as the AC Transit EasyPass and has Board-approved pricing matrices for employers, residential communities, and two- and four-year colleges. The EasyPass program currently has eight clients—three employers (City of Berkeley, UC Berkeley faculty and staff, and the City of Alameda); three colleges (UC Berkeley, Peralta Community Colleges [four campuses] and Mills College); and two residential communities (the 99-unit Ironhorse in West Oakland’s Central Station development and Fourth & U, a 171-unit development in Berkeley). There are about 61,000 eligible participants with more than 47,000 active passes in the entire program. The EasyPass staff responds to interest from potential new prospects weekly.
The program’s pricing and other programmatic elements are standardized to reduce time-to-market for new EasyPass clients. The EasyPass is loaded onto a ClipperSM regional fare card with the participant’s photo ID to enable easy boarding and provide ridership data to the District and EasyPass clients.

NextBus

The NextBus system provides AC Transit riders with real-time bus arrival information via the internet, signage at bus shelters, e-mail, cell phones, and smart phones. This system helps our riders reduce their wait times. NextBus uses GPS satellite technology to track buses, and then, taking into account typical traffic conditions, predicts when buses should arrive at a bus stop. Arrival predictions are updated every few minutes to ensure a high level of accuracy.
INDEX OF GRI PERFORMANCE INDICATORS (GRI G3 RG)\(^6\)

<table>
<thead>
<tr>
<th>GRI Indicator</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel and Energy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EN3</td>
<td>Core Direct energy consumption</td>
<td>13, 14</td>
</tr>
<tr>
<td>EN4</td>
<td>Core Indirect energy consumption</td>
<td>12</td>
</tr>
<tr>
<td>EN5</td>
<td>Core Energy saved due to conversion and efficiency improvements</td>
<td>12, 31</td>
</tr>
<tr>
<td>EN6</td>
<td>Additional Initiatives to provide energy-efficient or renewable energy-based products and services</td>
<td>27-29</td>
</tr>
<tr>
<td>EN7</td>
<td>Additional Initiatives to reduce indirect energy consumption</td>
<td>29</td>
</tr>
<tr>
<td>Emissions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EN16</td>
<td>Core Total direct and indirect GHG emissions</td>
<td>14 - 19</td>
</tr>
<tr>
<td>EN18</td>
<td>Core Initiatives to reduce GHG emissions</td>
<td>25 - 35</td>
</tr>
<tr>
<td>EN20</td>
<td>Core Air emissions by type and weight</td>
<td>14 - 19</td>
</tr>
<tr>
<td>EN26</td>
<td>Core Initiatives to mitigate environmental impacts of products and services</td>
<td>25 - 35</td>
</tr>
<tr>
<td>Water and Waste</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EN8</td>
<td>Core Water usage</td>
<td>19 - 20</td>
</tr>
<tr>
<td>EN22</td>
<td>Core Waste generated and recycled</td>
<td>20 - 21</td>
</tr>
<tr>
<td>EN24</td>
<td>Additional Waste deemed hazardous</td>
<td>20, 21</td>
</tr>
<tr>
<td>Compliance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EN28</td>
<td>Core Regulatory compliance record</td>
<td>22 - 24</td>
</tr>
</tbody>
</table>

WE WANT TO HEAR FROM YOU

We welcome your comments. Feedback helps us understand the issues important to our stakeholders, so that we can continuously improve our environmental performance. Please direct your comments, concerns, and questions to the following address:

Environmental Report Department
AC Transit
1600 Franklin Street
Oakland, CA 94612
sustainabilityreport@actransit.org