AC TRANSIT DISTRICT
Board of Directors

GM Memo No. 12-083a
Meeting Date: April 25, 2012

Committees:
Operations Committee
External Affairs Committee
Board of Directors
Planning Committee
Finance and Audit Committee
Financing Corporation

SUBJECT: Certification of East Bay Bus Rapid Transit Final Environmental Impact Report and Adoption of New Locally Preferred Alternative

RECOMMENDED ACTION:
☐ Briefing Item
☒ Recommended Motion

Receive Public Comment and Consider the Adoption of Resolution No. 12-018
Certifying the Final Environmental Impact Report (FEIR) for the East Bay Bus Rapid Transit Project, and selection of the Downtown Oakland-San Leandro Alternative (DOSL) as the Locally Preferred Alternative (LPA) for the Project, and authorizing the filing of a Notice of Determination.

Budgetary/Fiscal Impact:
None directly associated with this action. However, this project will require the expenditure of District funds to match federal and state funds currently dedicated to this project for its design and construction, and to purchase specialized Bus Rapid Transit (BRT) vehicles. The project will require an expenditure of operating funds to operate the service, maintain vehicles and facilities and to implement and monitor environmental mitigation measures.

Background/Discussion:
There are two proposed actions requested in this memorandum: 1) certification of the Final Environmental Impact Report (FEIR) and 2) adoption of the Downtown Oakland San Leandro (DOSL) Alternative as the new definition of the Locally Preferred Alternative (LPA).

1) Certification of the FEIR
As the lead agency for the project under the California Environmental Quality Act (CEQA), the District is responsible for certifying environmental documents for their legal and technical sufficiency. For this project, that certification also includes the adoption of the Findings of Fact, the Mitigation Monitoring and Reporting Plan and the Statement of Overriding Considerations. Once the FEIR is certified, the District is responsible for submitting a Notice of Determination (NOD) with the Alameda County Clerk as part of the certification process, along with paying any filing fees associated with the action of certifying the EIR.

The Federal Transit Administration is the lead agency at the federal level and is responsible for issuing environmental approvals under the National Environmental Protection Act (NEPA). FTA is expected to issue a Record of Decision (ROD) shortly after certification of the California element of the joint NEPA/CEQA FEIS/FEIR.

Per CEQA Guidelines Section 15090, prior to approving the proposed project or DOSL Alternative, the AC Transit Board of Directors (Board) shall certify that:
The Final EIR has been completed in compliance with CEQA;
The Final EIR was presented to the Board and that the Board reviewed and
considered the information contained in the Final EIR; and
The Final EIR reflects the independent judgment and analysis of the Alameda-Contra
Costa Transit (AC Transit).

In addition to the NOD, the District must also issue the following documents:
• Finding of Fact
• Mitigation Monitoring and Reporting Plan
• Summary of Public Comments on the FEIR

Findings of Fact
As defined in Section 15091 of the CEQA Guidelines, AC Transit shall not approve or carry
out a project for which an EIR has been certified that identifies one or more significant
environmental effects of the project unless the Board makes one or more written findings for
each of those significant effects, accompanied by a brief explanation of the rationale for each
finding. These are included in the Finding of Fact document contained in Attachment A.

Within the FEIR, the Finding of Fact document and the Mitigation Monitoring and Reporting
Plan, the Board will find that design features and mitigation measures have been incorporated
into the proposed project and the DOSL Alternative to reduce, minimize or avoid significant
environmental effects identified in the Final EIR. If the DOSL is adopted, design features and
mitigation measures would only apply to that alternative. The District would be responsible for
funding and implementing the mitigation measures. However, the implementation of
mitigation measures would not occur prior to approval by agencies with jurisdiction, which
may include the cities of Oakland, San Leandro and the California Department of
Transportation for the DOSL alternative.

Traffic is the area where the greatest environmental impacts are expected. A combination of
design modifications and mitigation measures has reduced traffic impacts at all but 6
intersections in the full LPA and at all but 1 intersection in the DOSL alternative. Most traffic
impacts that could not be mitigated would be on Telegraph Avenue, which is why, from a
CEQA perspective, the DOSL Alternative, has been identified as the superior environmental
alternative in the FEIR and in the Finding of Fact document.

There would be no other significant environmental impacts. For example, there would be
small adverse impacts and small positive impacts to the aesthetic/visual environment,
depending on location. There would be no impacts to biology, noise, air quality, cultural
resources, etc. For those impacts that cannot be reduced, avoided or eliminated, the District
will adopt, as part of the CEQA certification, a Statement of Overriding Considerations (see
Section 11 of Attachment A). Its adoption should be balanced with the project benefits
summarized above.

Statement of Overriding Considerations
In order to approve the proposed project or DOSL Alternative, CEQA requires that AC Transit
as the lead agency, balance, as applicable, the economic, legal, social, technological, or
other benefits against unavoidable environmental risks. If economic, legal, social, technological, or other benefits of the proposed project or DOSL Alternative outweigh the unavoidable adverse environmental effects, the adverse environmental effects may be considered "acceptable." The Statement of Overriding Considerations is incorporated as Section 11 of the Findings of Fact and identifies potentially significant traffic and circulation impacts that may result from implementation of the proposed project or DOSL Alternative.

AC Transit, as the lead agency, must state in writing the specific reasons to support its action based on the Final EIS/EIR and/or other information in the record for projects that would result in the occurrence of significant effects identified in the Final EIS/EIR but are not avoided or substantially lessened. All material supporting the Findings of Fact and Statement of Overriding Considerations is included in the administrative record.

Summary of Mitigation Monitoring & Reporting Plan
CEQA Section 21081.6 of the Public Resources Code requires a public agency to adopt a monitoring and reporting program assessing and ensuring the implementation of required standard conditions and mitigation measures applied to proposed developments. Specific reporting and monitoring requirements enforced during project initiation, implementation, and ongoing operation are adopted at the same times as the final approval of the project by the lead agency. Each potentially significant environmental impact is identified with accompanying mitigation measures to reduce potential impacts to less than significant.

When a lead agency approves a project, it is doing so with a fully disclosed understanding of the project's impacts. The District has an obligation to adopt feasible mitigation measures and impose design features that ensure a project's environmental effects are reduced, avoided, or eliminated—except in those cases where statements of overriding consideration have been adopted. The FEIR identifies a number of potentially significant adverse environmental impacts that may occur if the project is approved and developed. Measures are recommended for each of the identified significant adverse impacts to mitigate those effects and which become part of the project that is adopted. Further, if the proposed project were approved, requirements enacted by ordinance or policy are imposed upon the District and other regulatory agencies. The Mitigation Monitoring and Reporting Plan is included as Attachment B.

Public Comments on the FEIS/FEIR
During the Final EIS/EIR review and comment period (February 3 to March 19, 2012), AC Transit received comments on the proposed LPA and the DOSL Alternative. A summary of the public outreach, categories of comments received and copies of all comments are included in Attachment C.

Ninety-three written comments were received by mail and by email and 43 comments were submitted through the public meeting process during the public comment period, while 7 comments were received after the comment period closed. Major themes included comments on the trade-offs associated with how BRT achieves greater speed and reliability – namely the use of dedicated lanes that require allocating portions of the roadway to transit that are previously allocated to mixed flow traffic (buses, trucks, cars and etc.) and parking. Feedback
at the community meetings was mixed; generally either extremely supportive of whatever would provide the greatest benefit to transit riders or, conversely concerned about impacts to automobile drivers, parking loss (particularly in front of small businesses) and the distance between stops.

The comments will be used to identify possible refinements to the project that will be further evaluated, as appropriate, during the Preliminary Engineering (PE) phase of project development. The potential refinements will remedy design issues, and further minimize specific impacts along the corridor. For example, refinements may include shifting stations or adding 1-2 stations, adjusting safety and pedestrian features, increasing parking mitigation or other minor design adjustments. Refining the project design will require continued coordination with the cities and Caltrans. If the refinements developed in PE result in changes requiring additional environmental review, the District will be required to prepare the appropriate level of environmental documentation, and conduct outreach, in compliance with applicable federal and state environmental review requirements.

Additionally, today’s public hearing was widely publicized through the web, newspapers, on-board vehicles and other channels to ensure that the general public and those that commented on the prior environmental documents were notified. The process is explained in Attachment C-1.

2) Adoption of the Downtown Oakland to San Leandro (DOSL) Alternative as the Locally Preferred Alternative

The East Bay BRT project has undergone years of planning studies. Modifications to the project have been made based on community and city input and as mitigation for project impacts. Below is a summary of the decisions that have led to the recommendation by staff that the Board adopt the DOSL Alternative.

Evolution of LPA & Recommendation of DOSL
In 2001, the Board adopted the recommendations of the Policy Steering Committee to pursue BRT on Telegraph Avenue, International Boulevard and East 14th Street.

In 2007, four BRT alternatives were analyzed in the Draft EIS/EIR:

- No-Build Alternative
- Build Alternative 1 – Separate BRT and Local Service to Bay Fair BART
- Build Alternative 2 – Separate BRT and Local Service to San Leandro BART
- Build Alternative 3 – Combined BRT and Local Service to Bay Fair BART
- Build Alternative 4 – Combined BRT and Local Service to San Leandro BART

For each of the Build Alternatives, route alignment, service options, and features were analyzed. Basic features of the proposed East Bay BRT Project include transit priority at all signalized intersections, new passenger stations, and a combination of mixed-flow and dedicated travel lanes throughout the proposed project alignment. The East Bay BRT will take
the place of existing Route 1 local and Route 1R Rapid Bus service currently operating in the corridor.

Following the release of the Draft EIS/EIR, a concerted effort was undertaken with the cities to evaluate the four BRT alternatives and select or develop an Alternative that would meet city goals, address concerns and still meet the project purpose and need.

In 2010, the District completed its efforts to refine the project to increase community benefits and minimize negative impacts. The Oakland and San Leandro city councils defined their "Locally Preferred Alternative" BRT project for study in Final EIS/EIR and to potentially build. Of the Build Alternatives studied in the Draft EIS/EIR, Alternative 4-- BRT service from Berkeley to the San Leandro BART station—with a combination of mixed-flow and dedicated BRT lanes, was selected as the LPA for the Final EIS/EIR. The full LPA corridor is 14.38 miles long. The process for selecting the LPA is described in greater detail in Section 2.1 of the Final EIS/EIR. The LPA was determined at that time to be the most desirable alternative for balancing functional efficiency with environmental and social effects.

When the LPA was adopted, the AC Transit Board, and in response to the City of Oakland and other stakeholder input, included a second less-costly build alternative for evaluation in the Final EIS/EIR. This alternative was defined and evaluated in the Final EIS/EIR in an effort to fully disclose a functional system that could be considered if funding or other constraints prohibit the full build out of the currently defined LPA. This alternative is called the Downtown Oakland-San Leandro BRT (DOSL) Alternative.

The boundaries for the DOSL alternative were developed based on capital cost estimates, ridership forecasts, and consideration regarding logical termini for a shortened project. Under this alternative, there will be no significant dedicated BRT lanes north of 20th Street (Uptown station). South of 20th Street, the BRT will run in center-running or side-running BRT lanes as described in the LPA. Other features of the DOSL Alternative would be the same as the LPA, but with fewer stations (32).

Downtown Oakland-San Leandro BRT Alternative (DOSL Alternative)

Staff recommends that the Board adopt the DOSL Alternative as the Locally Preferred Alternative. The DOSL Alternative is an effective and viable project that meets the project's purpose and need while minimizing negative impacts.

As noted above, the Final EIS/EIR included the identification and full impact assessment of the LPA as well as the proposed DOSL Alternative. Consistent with the decision making throughout the EIS process and in compliance with requirements of the National Environmental Policy Act (NEPA), the recommendation of a revised LPA-- the DOSL Alternative--is based on the analysis in the Final EIS/EIR, consultation with permitting agencies, comments received during the Final EIS/EIR review and comment period, more detailed analysis, and the results of the planning and engineering processes conducted with the cities of Oakland and San Leandro. As documented in the Final EIS/EIR, the DOSL Alternative is consistent with the goals and objectives developed for the project and that best meets the identified project Purpose and Need within the fiscal and environmental constraints
of the corridor. Additionally, as defined and disclosed in Sections 6.2.4.2 and 3, of the FEIS/EIR, the DOSL Alternative is identified as the environmentally superior alternative under the California Environmental Quality Act (CEQA) process, as it would result in fewer transportation related impacts than the original LPA. The table below from Chapter 9 of the FEIR compares the LPA and DOSL for their ability to meet project goals and objectives.

Summary of Effects Relative to Project Goals and Objectives

<table>
<thead>
<tr>
<th>Measure</th>
<th>LPA</th>
<th>DOSL Alternative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Improve Transit Service in the Project Corridor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Express buses per hour (frequency)</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>Capacity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Bus seat-miles operated</td>
<td>+++</td>
<td>++</td>
</tr>
<tr>
<td>- Roadway auto capacity</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>- Roadway person-trip capacity</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Speed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- BRT bus average speed</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>- Auto average speed</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Express bus travel time (Berkeley to San Leandro BART)</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>Express bus boarding time</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Reliability (Berkeley to San Leandro BART)</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>Security, comfort and cleanliness</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Improve Transit Ridership by Providing Transit Alternative to Automobile</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weekday boardings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- New trips and total corridor/system</td>
<td>+++</td>
<td>++</td>
</tr>
<tr>
<td>- Auto vehicle VMT/trips</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Improve and Maintain Efficiency of Transit Service Delivery</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capital costs – total</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Net operating costs – total</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Net operating costs – per trip</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>Annualized total cost – per new transit trip</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>Support Local and Regional Planning Goals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weekday express buses between key activity centers (trips)</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>Point-to-point peak-period express bus travel time between key activity centers</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Potential for transit-oriented development</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>Environmental Impacts</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parking displaced</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Intersection and roadway LOS</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Construction impacts (traffic, utilities)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Environmental Justice (effect on low-income/minority)</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>Measure</td>
<td>LPA</td>
<td>DOSL Alternative</td>
</tr>
<tr>
<td>---</td>
<td>-----</td>
<td>-----------------</td>
</tr>
<tr>
<td>Other environmental effects</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(air quality, hazardous materials, land use)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SCALE: - worse/greater impact than No-Build

The DOSL Alternative improves transit capacity, speed, reliability, frequency, safety and security, and comfort and convenience between Downtown Oakland and San Leandro BART, benefitting existing and future passengers. Shortly after the system opens in 2016, it is forecasted to increase transit boarding in the corridor by 11,400 per day, increase AC Transit’s system-wide boardings by 5,900 per day, and “new riders” formerly using autos by 2,500 per day.

The DOSL Alternative is also financially viable. It would reduce net operating cost per boarding (adjusted for fare revenue) by approximately $0.76 in year 2016, from $2.26 to $1.49. The DOSL achieves the purpose of the project at substantially lower cost ($152.3 million versus $205.1 million).

The DOSL Alternative has positive environmental attributes and fewer negative impacts. It reduces vehicles miles traveled (VMT) by autos by 8,000 per day. It reduces generation of greenhouse gases in the corridor by 4,100 lbs of CO2 equivalents per day. The DOSL Alternative has fewer intersection and roadway impacts and fewer parking displacements than the LPA. The DOSL Alternative has only one significant and unavoidable intersection impact in year 2035 and none in year 2015. In contrast, the LPA has six significant and unavoidable intersection impacts in year 2035 and one in year 2015. The DOSL Alternative displaces a total of 607 parking spaces compared to the LPA which displaces 1,071.

The DOSL alternative also supports Transit Oriented Development. It provides a major infrastructure investment that enhances livability and helps attract economic investment and transit oriented development. The City of Oakland recently approved the International Boulevard Transit Oriented Development Plan, which heavily featured the BRT in the corridor.

During the outreach for the FEIR/S, several stakeholders expressed interest in forwarding BRT development in portions of the corridor that were already eliminated by city action (e.g. Bayfair BART terminus) or would be eliminated through the selection of the DOSL (i.e. Telegraph Avenue). While an environmental document only has a 3 year shelf life, much of the work conducted in the development of the BRT corridor would need to be redone if begun after the BRT is operational. However, because the FEIR/S represents a comprehensive body of study, cities wishing to forward BRT development could use any and all of the work conducted to date to assist them in that decision-making process. This includes all of the technical documentation and studies that the District has undertaken thus far.

Additionally, the District’s Strategic Vision has not been revised since its inception. As a result, the corridors listed for BRT improvements may not reflect our current priorities. During the revision of the Strategic Vision, District staff commits to working with our city partners to ensure that the corridors selected for advancement match the District’s priorities as well as city direction.
Next Steps
After certification of the FEIR and adoption of the DOSL as the LPA, the following activities would commence.

1. **May & June 2012**
 - FTA issues Record of Decision on Final Environmental Impact Statement according to the National Environmental Policy Act
 - City councils of Oakland and San Leandro adopt project
 - Refine parking mitigation plan

2. **Summer & Fall 2012**
 - AC Transit to establish Community Advisory Committee for design, aesthetics, parking impact mitigation and construction
 - Refine BRT design during Preliminary Engineering phase based on public input
 - Refine operating and maintenance costs
 - Formalize interagency agreements for operations (use of the street) and maintenance
 - Substantial progress on preliminary engineering (PE)
 - Identify scope of other improvements to be pursued

Prior Relevant Board Actions/Policies:
GM 10-144: Adopting the LPA
GM 10-212: Amending LPA

Attachments:
Attachment A: East Bay Bus Rapid Transit Finding of Fact
Attachment B: East Bay Bus Rapid Transit Mitigation Monitoring and Reporting Plan
Attachment C: East Bay Bus Rapid Transit Final Environmental Impact Statement / Report Comment Summary & Public and Agency Comments
Attachment C-1: Description of Public Hearing Notification
Attachment D: Notice of Determination (Draft)
Attachment E: Resolution No. 12-018

Approved by:
David Armijo, General Manager

Reviewed by:
Vincent C. Ewing, General Counsel

Prepared by:
Tina Spencer, Director of Service Development and Planning
Jim Cunradi, Manager of Special Projects
Victoria Wake, Manager of Marketing and Communications

Date Prepared:
April 6, 2012
FINDINGS OF FACT AND STATEMENT OF OVERRIDING CONSIDERATIONS

DRAFT FOR INTERNAL REVIEW AND DISCUSSION/NOT FOR PUBLIC DISTRIBUTION – 03.24.2012

Prepared By:

Kimley-Horn and Associates, Inc.
401 B Street, Suite 600
San Diego, California 92101

097958003
Table of Contents

1. Introduction .. ii
2. Acronyms and Abbreviations ... iii
3. Project Description .. 3-1
 3.1 Project Location ... 3-3
 3.2 Project History .. 3-3
 3.3 Project Objectives .. 3-5
 3.4 Project Summary .. 3-5
4. Findings Required Under CEQA ... 4-1
5. Legal Effects of Findings .. 5-1
6. Mitigation Monitoring and Reporting Program ... 6-1
7. Findings .. 7-1
 7.1 Significant Effects and Mitigation Measures ... 7-1
 7.2 Significant or Potentially Significant Impacts for Which Mitigation is Outside the Agency’s Responsibility or Jurisdiction ... 7-23
 7.3 Significant Unavoidable Impacts .. 7-25
8. Findings Related to Cumulative Impacts ... 8-1
10. CEQA Alternatives .. 10-1
 10.1 Alternatives Considered and Dismissed from Further Consideration 10-1
 10.2 Summary of Alternatives Considered .. 10-2
11. Statement of Overriding Considerations .. 11-1
1 INTRODUCTION

This Findings of Fact and Statement of Overriding Considerations was prepared consistent with the California Environmental Quality Act (CEQA) (Public Resource Code 21000-21177) and the CEQA Guidelines (California Code of Regulations (CCR), Title 14, Division 6, Chapter 3, Sections 15000-15387). This Findings of Fact (Findings) and Statement of Overriding Considerations (SOC) document was prepared per Sections 15091 and 15093 of the CEQA Guidelines as required by Section 15092 as part of the Final Environmental Impact Report (FEIR) approval and certification process for the East Bay Bus Rapid Transit Project. The East Bay Bus Rapid Transit Project was evaluated in a joint National Environmental Policy Act (NEPA) and CEQA document prepared per Section 15222 of the CEQA Guidelines. The proposed project as defined under Section 15378 of the CEQA Guidelines is defined within the Final Environmental Impact Statement (EIS/EIR) as the Locally Preferred Alternative (LPA) which is the terminology used by the Federal Transit Administration. Within this document, the East Bay Bus Rapid Transit (BRT) Project is referred to as the proposed project to ensure consistency with CEQA terminology.

The proposed project evaluated as the LPA within the Final EIS/EIR would include BRT improvements between downtown Berkeley (at the northern terminus) and the San Leandro Bay Area Rapid Transit (BART) station (at the southern terminus). The corridor is approximately 14.4 miles in length. General corridor-wide elements proposed for Oakland and San Leandro are as follows:

- Dedicated median bus lanes for exclusive use by buses and emergency vehicles in most of the corridor;
- Dedicated right-hand bus lanes on some segments that give preference to transit operations;
- Proof of payment ticket validation;
- Transit signal priority (TSP), new traffic signals, pedestrian signals, and transit-only signals;
- Real-time traveler information; and
- Pedestrian access and safety improvements at stations.

BRT stations in Oakland and San Leandro will include substantial shelters with extended canopies and amenities for the comfort and convenience of passengers, including lighting, security features (e.g., closed circuit television and emergency phones), ticket vending machines for off-board fare payment and collection. In Berkeley, BRT stations will retain features currently associated with Rapid Bus service stops but include off-board fare vending for BRT users.

DOWNTOWN OAKLAND-SAN LEANDRO ALTERNATIVE

The AC Transit Board of Directors at its June 23, 2010, meeting provided direction on an additional alternative for study in the Final EIS/EIR. The downtown Oakland to San Leandro (DOSL) Alternative was recommended for study as a lower cost alternative that could have fewer environmental effects and lower capital costs to implement compared to the proposed project. The DOSL follows the same alignment as the proposed project from downtown Oakland to the San Leandro BART station, and has the same features as the proposed project in this portion of the alignment. Findings regarding both the proposed project and DOSL are referenced herein.
2 ACRONYMS AND ABBREVIATIONS

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABAG</td>
<td>Association of Bay Area Governments</td>
</tr>
<tr>
<td>AC Transit</td>
<td>Alameda-Contra Transit District</td>
</tr>
<tr>
<td>APS</td>
<td>Be Accessible Pedestrian Signals</td>
</tr>
<tr>
<td>BAAQMD</td>
<td>Bay Area Air Quality Management District</td>
</tr>
<tr>
<td>BART</td>
<td>Bay Area Rapid Transit</td>
</tr>
<tr>
<td>BMPs</td>
<td>Best Management Practices</td>
</tr>
<tr>
<td>BRT</td>
<td>Bus Rapid Transit</td>
</tr>
<tr>
<td>BSA</td>
<td>Biological Study Area</td>
</tr>
<tr>
<td>CAA</td>
<td>Clean Air Act</td>
</tr>
<tr>
<td>CCR</td>
<td>California Code of Regulations</td>
</tr>
<tr>
<td>CDF&G</td>
<td>California Department of Fish And Game</td>
</tr>
<tr>
<td>CEQA</td>
<td>California Environmental Quality Act</td>
</tr>
<tr>
<td>CNNDB</td>
<td>California Natural Diversity Database</td>
</tr>
<tr>
<td>CNPSEI</td>
<td>California Native Plant Society Electronic Inventory</td>
</tr>
<tr>
<td>CO</td>
<td>Carbon Monoxide</td>
</tr>
<tr>
<td>DOSL</td>
<td>Downtown Oakland to San Leandro</td>
</tr>
<tr>
<td>ESCP</td>
<td>Erosion And Sediment Control Plan</td>
</tr>
<tr>
<td>EIR</td>
<td>Environmental Impact Report</td>
</tr>
<tr>
<td>EIS</td>
<td>Environmental Impact Statement</td>
</tr>
<tr>
<td>FEIR</td>
<td>Final Environmental Impact Report</td>
</tr>
<tr>
<td>FHWA</td>
<td>The Federal Highway Administration</td>
</tr>
<tr>
<td>FTA</td>
<td>Federal Transit Administration</td>
</tr>
<tr>
<td>LOS</td>
<td>Level of Service</td>
</tr>
<tr>
<td>LPA</td>
<td>Locally Preferred Alternative</td>
</tr>
<tr>
<td>LRT</td>
<td>Light-Rail Transit</td>
</tr>
<tr>
<td>MIS</td>
<td>Major Investment Study</td>
</tr>
<tr>
<td>MMRP</td>
<td>The Mitigation Monitoring And Reporting Program</td>
</tr>
<tr>
<td>mph</td>
<td>Miles Per Hour</td>
</tr>
<tr>
<td>MTC</td>
<td>Metropolitan Transportation Commission</td>
</tr>
<tr>
<td>NAAQS</td>
<td>National Ambient Air Quality Standards</td>
</tr>
<tr>
<td>NAHC</td>
<td>California Native American Heritage Commission</td>
</tr>
<tr>
<td>NB</td>
<td>Northbound</td>
</tr>
<tr>
<td>NEPA</td>
<td>National Environmental Policy Act</td>
</tr>
<tr>
<td>Acronym</td>
<td>Full Form</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
</tr>
<tr>
<td>NHPA</td>
<td>National Historic Preservation Act</td>
</tr>
<tr>
<td>NOP</td>
<td>Notice of Preparation</td>
</tr>
<tr>
<td>NO\textsubscript{X}</td>
<td>Nitrogen Oxides</td>
</tr>
<tr>
<td>O\textsubscript{3}</td>
<td>Ozone</td>
</tr>
<tr>
<td>PM</td>
<td>Particulate Matter</td>
</tr>
<tr>
<td>SB</td>
<td>Southbound</td>
</tr>
<tr>
<td>SIPs</td>
<td>State Implementation Plans</td>
</tr>
<tr>
<td>SOC</td>
<td>Statement of Overriding Considerations</td>
</tr>
<tr>
<td>SO\textsubscript{X}</td>
<td>Sulfur Oxide</td>
</tr>
<tr>
<td>SPCC</td>
<td>Spill Prevention, Contaminant and Clean-Up Plan</td>
</tr>
<tr>
<td>SWMP</td>
<td>Storm Water Management Plan</td>
</tr>
<tr>
<td>SWPPP</td>
<td>Stormwater Pollution Prevention Plan</td>
</tr>
<tr>
<td>TAC</td>
<td>Toxic Air Contaminant</td>
</tr>
<tr>
<td>TIP</td>
<td>Transportation Improvement Program</td>
</tr>
<tr>
<td>TMP</td>
<td>Transportation Management Plan</td>
</tr>
<tr>
<td>TSP</td>
<td>Transit Signal Priority</td>
</tr>
<tr>
<td>USFWS</td>
<td>U.S. Fish and Wildlife Service</td>
</tr>
<tr>
<td>VMT</td>
<td>Vehicle Miles Traveled</td>
</tr>
<tr>
<td>VOC</td>
<td>Volatile Organic Compound</td>
</tr>
<tr>
<td>WH&SP</td>
<td>Worker Health and Safety Plan</td>
</tr>
</tbody>
</table>
3 PROJECT DESCRIPTION

The Alameda-Contra Transit District (AC Transit) East Bay Bus Rapid Transit Project would provide high quality, fast and frequent express bus service along a 14-mile-long corridor between downtown Berkeley and the University of California at Berkeley at the northern end, through downtown Oakland, to San Leandro at the southern end. This corridor has characteristics that are highly conducive to transit use and particularly well-suited to bus rapid transit (BRT). Approximately 260,000 residents live within or in proximity to the corridor and the area contains some of the highest employment and residential densities in the East Bay communities of the San Francisco Bay Area.

The project corridor is centered on downtown Oakland, the East Bay’s largest city, within which more than 65,000 people are employed. The northern end of the corridor is anchored by the University of California, Berkeley, which has a student population of approximately 36,000 students in 2010 and employs approximately 15,360 people. An additional 20,460 employees work in Downtown Berkeley (estimated Fall 2009). South of downtown Oakland, the corridor passes through some of the San Francisco Bay Area’s densest residential neighborhoods, averaging 13,440 persons per square mile (25 persons per acre). The southern end of the corridor is anchored by the San Leandro BART station, a transfer point for four local bus routes and the BART regional rail system.

The Oakland and San Leandro portions of the corridor include substantial concentrations of low-income, ethnic minority, and transit-dependent populations. AC Transit buses in this corridor currently carry approximately 25,000 riders (bus boardings) per day. This is over 10 percent of AC Transit’s total ridership and rivals the numbers of passengers carried along some light rail lines in California.

Recognizing the importance of the Berkeley-Oakland-San Leandro transit corridor, the proposed project from downtown Berkeley to San Leandro would involve the following improvements:

In general from north to south, the proposed project begins in downtown Berkeley, proceeds along the south side of the University of California, Berkeley campus to Telegraph Avenue, then along Telegraph Avenue to downtown Oakland, then along International Boulevard to San Leandro. In San Leandro, the alignment runs along East 14th Street to Davis Street, then San Leandro Boulevard to San Leandro BART.

Weekday BRT service will be provided at five-minute frequencies throughout the day, 10-minute frequencies in the evening, and hourly service from midnight to 5:00 a.m. On weekends, daytime service will be at 15-minute intervals in the northern part of the corridor and 7.5-minute intervals in the southern portion. Weekend evening service will be at 15-minute intervals. Over time, service could become more frequent as demand warrants.

For the DOSL Alternative, the alignment would remain the same as the proposed project, but the BRT lane features would be different. The DOSL Alternative begins at 20th Street (Uptown station) in Oakland. Under this alternative, there will not be dedicated BRT lanes north of this point. South of this point, with the exception of downtown Oakland along 20th Street and Broadway where BRT buses operate in mixed flow traffic lanes, the BRT runs in center-running or side-running BRT lanes as described in the proposed project. To preserve the reliability of buses operating in the dedicated bus lanes in south Oakland, the bus route will be split at 20th Street. One bus route will operate between downtown Berkeley and downtown Oakland. The other will operate as the DOSL Alternative between downtown Oakland and the San Leandro BART station. Hours of operation and service frequencies for the DOSL Alternative will be the same as the proposed project in the downtown Oakland to San Leandro BART segment of the corridor. This Final EIS/EIR describes the characteristics and potential environmental effects of the proposed project and DOSL Alternative.
TRANSITWAY

The BRT transitway will typically consist of dedicated lanes for transit only. Other traffic with the exception of emergency vehicles will be prohibited from using the transit way; however, vehicles turning right and parking would be allowed to pass through the side-running transit ways. Median transitways will be 22 to 24 feet in width for two-directional travel and side-running transitways will be 11 to 12 feet in width for single direction travel. Transitways will be separated from mixed-flow traffic lanes by only striping, a rumble strip, or a low a mountable curb. Along several roadways, transit lanes will be established by converting mixed-flow traffic lanes to transit-only lanes.

STATIONS

There are 47 stations proposed as part of the proposed project, including six stations in Berkeley, 36 stations in Oakland, and five stations in San Leandro. Other than crossing Lake Merritt Dam and I-580, all stations are less than 0.45 miles apart, with 90 percent of stations less than 0.4 miles apart. Average station spacing is 0.31 mile. The DOSL Alternative includes 32 of these stations, from 20th Street south to San Leandro BART. For passengers, BRT stations in Oakland and San Leandro will be the most recognizable feature of the East Bay BRT Project. Stations in the roadway median will be designed to provide passenger platforms typically 12-feet wide and 60-feet long, raised 13 to 15 inches above the top of the roadway pavement. Stations along the curb will extend approximately six to eight feet from the curb and be raised 13 to 15 inches above pavement at the boarding edge, be integrated into the adjacent sidewalk, and also be 60-feet long. Platforms will be at or slightly lower than the floor level of BRT buses, allowing fast and convenient passenger loading and unloading.

Curbside stations in Berkeley will include ticket vending machines, passenger information, and passenger shelters. BRT stations in Oakland and San Leandro will provide a high level of amenities and provide convenient, safe, and secure areas for system users. BRT stations in Oakland and San Leandro will be constructed either in the street median or along the outside curb—the latter designated as “curbside” stations. Median stations will serve transitways constructed in the middle of the street and will not be affected by curb and sidewalk activities (e.g., parking maneuvers and pedestrian traffic). It should be noted that all stations in Berkeley will be curbside stations and will include a ticket vending machine and real-time passenger information signs. Berkeley stations will not have raised platforms or any other features discussed in this section.

PEDESTRIAN AMENITIES AND LANDSCAPE TREATMENTS

The proposed project will alter pedestrian environments along the alignment of the BRT transitway. The East Bay BRT Project has the potential to improve the overall pedestrian environment. Recommended pedestrian treatments include crosswalks, curb ramps, pedestrian push buttons, curb extensions, and pedestrian refuge islands. For signalized intersections, also included will be accessible pedestrian signals (APS), countdown timers, and signal timing and re-timing. Unsignalized intersections will include in-roadway warning lights and pedestrian crossing signals.

FARE COLLECTION

The proposed East Bay BRT fare system will be barrier-free self-service, proof of payment fare collection. All BRT stations will have ticket vending machines so that passengers can pay their fares in advance of the bus arriving, thereby speeding up passenger boarding. Single ride fares will require a receipt validated at the boarding stations showing date and time of initial use. Ticket validating machines will be provided alongside ticket vending machines for this purpose. Under self-service fare collection, passengers can use any door to board buses, which will greatly reduce bus idling time at bus stops during fare collection.
ITS COMPONENTS

The East Bay BRT Project will include technologically advanced passenger information and traffic control features, referred to as ITS. These systems are included with Rapid Bus Route 1R under the No-Build Alternative and will be enhanced under the proposed project or DOSL, where practicable. The two primary ITS elements will include real-time bus arrival information, displayed (and announced) at stations and available on the Internet; and transit signal priority for buses at traffic signals along the alignment with real-time adjustments to maintain even spacing between buses.

LOW-FLOOR, DUAL-SIDED DOOR BUSES

To implement the proposed project, AC Transit would purchase new dual-sided door buses, where boarding and alighting can occur on either the left-side or the right-side of the bus. These buses allow for the construction of platforms between the opposing median-running transitway lanes, as opposed to split platforms for each station, located between each transitway lane and the general purpose lanes. A single platform can serve both directions of travel, allowing for a more efficient use of station space. This reduces both project cost as well as parking space displacement.

Except in Berkeley, all BRT stations will include substantial shelters with extended canopies and amenities for the comfort and convenience of passengers, including lighting and security features (e.g., closed circuit television and emergency phones).

3.1 PROJECT LOCATION

The proposed project alignment would primarily follow Telegraph Avenue in the northern portion of the corridor and International Boulevard/East 14th Street in the southern portion. The alignment would begin near the downtown Berkeley BART Station, continue along the south side of the UC Berkeley campus to Telegraph Avenue, and then follow Telegraph Avenue to Broadway and downtown Oakland. The alignment would continue south of downtown Oakland along International Boulevard/East 14th Street through downtown San Leandro and terminate at the San Leandro BART Station.

3.2 PROJECT HISTORY

AC Transit performed a systematic study of its busiest bus routes in the early 1990s. That study, the *Alternative Modes Analysis*, was completed in April, 1993, and identified priority corridors and candidate technologies for major transit investments that would provide cost effective methods to serve AC Transit’s ridership. The study also evaluated ways to reduce noise and air pollution from AC Transit’s operations and identified the Berkeley/Oakland/San Leandro corridor as the best single corridor for further evaluation.

Over a three-year period from 1999 to 2002, AC Transit conducted a Major Investment Study (MIS) of the Berkeley/Oakland/San Leandro corridor to examine alternatives for improved transit service. The MIS established nine key service objectives to guide the identification and evaluation of improvement options. The objectives continued to influence the study process as it progressed through the environmental review phase. The MIS was conducted with input and guidance from key stakeholder agencies, elected officials, community leaders, and the general public. The service objectives established during the MIS were converted to various, specific performance measures by which to evaluate the environmental, operational, and financial attributes of the Build Alternatives carried forward into the environmental review process.

On August 2, 2001, the AC Transit Board of Directors adopted BRT as the LPA (herein referred to as the proposed project), with the understanding that light-rail transit (LRT) should be considered as a long-term goal. BRT, featuring high-capacity express operations along dedicated lanes on existing roadways, was selected because it could provide many of the same features as LRT and would attract a large number of new riders at a much lower cost and with fewer traffic, parking, and construction impacts than LRT. The
mode and alignment, consisting of BRT running along Telegraph Avenue, International Boulevard and East 14th Street, were adopted for more detailed environmental studies.

In 2003, AC Transit released a Notice of Preparation (NOP) to initiate the CEQA process. In May 2007, AC Transit released for public review a Draft EIS/EIR for the proposed project. The Draft EIS/EIR is a joint CEQA/NEPA document prepared as described in CEQA Guidelines Section 15222.

Following a 45-day review period, the public review and comment period for the Draft EIS/EIR closed on July 3, 2007. A total of 234 agencies, individuals, and organizations provided review comments. After considering each alternative evaluated in the Draft EIS/EIR, AC Transit determined that improvements would be needed in the corridor to meet the study purpose and need (project objectives as defined in Section 15124(b) of the CEQA Guidelines). Of the Build Alternatives studied in the Draft EIS, BRT service from Berkeley to the San Leandro BART station in a combination of mixed-flow and dedicated BRT lanes, was selected as the proposed project. Subsequent actions to refine the proposed project are summarized in the process to develop the preferred alternative discussion below.

More than three years passed between circulation of the Draft EIS/EIR and preparation of the Final EIS/EIR; thus, AC Transit evaluated whether recirculation was necessary per Section 15088.5 of the CEQA Guidelines. This evaluation occurred concurrently with preparation of a reevaluation document required by the FTA under NEPA. Regarding recirculation of the Draft EIR, CEQA Guidelines Section 15088.5, requires lead agencies to recirculate an EIR only when significant new information is added to the EIR after public notice is given of the availability of the Draft EIR for public review. New information added to an EIR is not significant unless the EIR has changed in a way that deprives the public of a meaningful opportunity to comment upon a substantial adverse, environmental effect of the project or a feasible way to mitigate or avoid such an effect that project proponents have declined to implement (CEQA Guidelines, Section 15088.5). In summary, significant new information consists of:

1) Disclosure of a new significant impact;
2) Disclosure of a substantial increase in the severity of an environmental impact requiring new mitigation;
3) Disclosure of a feasible project alternative or mitigation measure considerably different from the others previously analyzed that would clearly lessen the significant environmental impacts of the project but the project proponent declines to adopt it; and
4) The Draft EIR was so fundamentally and basically inadequate and conclusory in nature that meaningful public review and comment were precluded (CEQA Guidelines, Section 15088.5).

Recirculation is not required where, as stated above, the new information added to the EIR merely clarifies, amplifies or makes insignificant modifications in an adequate EIR (CEQA Guidelines, Section 15088.5). The analysis in the Final EIR provides additional details related to the analysis provided in the Draft EIR. Accordingly, this information is intended to clarify or amplify the analysis, and recirculation is not required. Thus, clarifications to the Draft EIR provided through the responses to comments do not result in any changes to the Draft EIR “that deprives the public of a meaningful opportunity to comment upon a substantial adverse environmental effect of the project or a feasible way to mitigate or avoid such an effect (including a feasible project alternative) that the project’s proponents have declined to implement” [CEQA Guidelines, Section 15088.5(a)]. Based on CEQA Guidelines and the limited nature of project changes, AC Transit has determined that there is substantial evidence that recirculation of the Draft EIR is not required under CEQA (CEQA Guidelines, Section 15088.5).

As defined by CEQA Guidelines Section 15132, the Draft EIR, together with the Revisions to the Draft EIR and Response to Comments, constitute the Final EIR for the proposed project. The Final EIR is an informational document prepared by the lead agency that must be considered by decision makers before approving or denying the proposed project. Section 15004 of the CEQA Guidelines states that before the
approval of any project subject to CEQA, the lead agency must consider the final environmental document, which in this case is the Final EIS/EIR. The Final EIS/EIR has been prepared pursuant to the requirements of CEQA, and incorporates comments from public agencies and the general public, and contains appropriate responses by the lead agency to those comments.

3.3 PROJECT OBJECTIVES

The project objectives are identical to the project purpose as defined within Section 1.3.1 of the FEIS/EIR and are summarized as follows:

Improve transit service and better accommodate high existing bus ridership. The proposed project would provide improved service to current riders, including low-income and transit-dependent populations, by offering higher frequency, faster, and more reliable service, along with improved security, cleanliness, and comfort.

Increase transit ridership by providing a viable and competitive transit alternative to the private automobile. The proposed project would attract new riders by offering improved transit service and facilities, transit travel times competitive with auto travel, and a rail-like experience proven to attract riders from autos.

Improve and maintain efficiency of transit service delivery and lower AC Transit’s operating costs per rider. The proposed project would improve fleet speeds and service efficiencies by reducing delays from running in mixed-flow traffic and during slow boarding and alighting of passengers. The investment in bus-only lanes, stations, and multi-door boarding means that the improvement in travel time and reliability will continue into the future without continual service degradation due to increased traffic congestion and delays with increased boardings.

Support local and regional planning goals to organize development along transit corridors and around transit stations. Providing BRT infrastructure of dedicated transit lanes and highly visible transit stations offers a sense of permanence that can help cities attract investment in transit-oriented development.

3.4 PROJECT SUMMARY

3.4.1 PURPOSE AND NEED

To meet the objectives listed above, the purpose and need for the proposed project is intended to address the following:

CONDITIONS THAT DISCOURAGE TRANSIT USE

Although high transit ridership supports the need for transit service in the proposed project corridor, existing service and facility deficiencies compromise service delivery and limit increases in new ridership. Heavy passenger counts and steadily worsening traffic conditions degrade schedule reliability and transit travel times. Average bus fleet speeds slowed one mile per hour annually from 1993 to 2003; however, travel times have slightly improved in recent years. Buses currently average 11.65 miles per hour in revenue service. Express buses take 70 minutes in the a.m. peak and 74 minutes in the p.m. peak to travel the 14.4 miles from downtown Berkeley to San Leandro. Local buses are considerably slower, taking 80 minutes in the a.m. and 90 minutes in the p.m. to cover this distance. While the average speed of express buses is near the system average of 11.7 miles per hour (mph), the average speed of local buses is less than 10 mph. Variable travel times make transit schedules unreliable and the transit option unattractive.

Poor reliability within the proposed East Bay BRT alignment is evident in overall schedule performance. AC Transit considers a bus arriving within five minutes of the scheduled time as on-time. If it arrives
more than five minutes after it is scheduled to arrive it is considered late. Based on winter 2008/2009 survey data, AC Transit determined that from morning to early evening during the weekday, only about three of every 10 Route 1R buses running in the peak direction were able to complete their runs (i.e., reach the end of line destination) within five minutes of the scheduled run time.

SERVICE INEFFICIENCIES THAT INCREASE OPERATING COSTS

Low transit vehicle speeds and unreliable travel times contribute to inefficiencies in transit service even when high ridership exists. When buses cannot run according to schedule, reliability suffers and passenger loads are distributed unevenly. Some buses run fully loaded and leave passengers waiting while other buses run with empty seats. Adding more buses to address the problem only adds to congestion and results in higher operating and maintenance cost.

The proposed BRT service would address schedule reliability, bus loading, and congestion problems directly by using dedicated bus lanes to remove buses from mixed-flow traffic. Improved schedule reliability and ease of bus access would speed up boarding and increase corridor transit capacity. Ridership and overall operating costs would increase; however, costs per rider costs would decrease. This would improve operating efficiency.

CAPACITY AND RELIABILITY CONSTRAINTS COMPROMISE ACCESSIBILITY

Corridor buses frequently operate with full loads and standing passengers; however, the need to operate in mixed-flow traffic limits the ability to expand transit capacity within the corridor. Adding more buses to the line would exacerbate the problem. Transit riders left standing at bus stops translates to lost work and family time and reduced productivity. Potential transit riders who can commute by private automobile may abandon transit while others may forego employment opportunities if transit is undependable.

The proposed project would address existing service deficiencies by providing dedicated transit lanes and transit signal priority to remove transit from mixed-flow traffic expedite movement through signalized intersections. The result would be more reliable schedules and shorter transit travel times; thus, transit would be much more competitive with the automobile.

DELAYS IN BOARDING

In addition to traffic delays incurred when busses pull to the curb, boarding delays can be caused by passengers stepping up into the bus doorway and stopping to put coins and bills into the farebox while managing packages, strollers, or other carry-ons. Passengers with disabilities also need the assistance of lifts or ramps to enter and exit buses which further contributes to delays.

Bus-only lanes provided by the proposed project would work in conjunction with BRT stations and level boarding platforms to facilitate passenger access. Low floor vehicles and raised boarding platforms would allow near-level boarding, enabling passengers, including those with disabilities or strollers, to simply walk or roll onto the bus. Boarding and alighting would be possible through multiple doors. This would shorten bus dwell times - the time spent waiting at a bus stop. Proof-of-payment with prepaid fare collection would eliminate delays associated with using a farebox. Boarding more passengers in less time would provide more transit seats without the added costs of additional buses. This would improve the overall efficiency of the system.

FUTURE TRAVEL DEMAND MEANS INCREASED CONGESTION

By 2015, traffic on Telegraph Avenue, International Boulevard and parallel arterials will have reached or will slightly exceed the levels experienced prior to the recession of 2008 and 2009. Travel demand forecasts suggest that by the year 2035, without any capacity increases, corridor traffic will operate under heavily congested conditions. Vehicle trips along the proposed East Bay BRT Project alignment and immediately parallel (or alternate) arterials are projected to increase substantially. Two locations illustrate the increased vehicle travel along the BRT corridor: at Telegraph Avenue and 27th Street in
North Oakland and at International Boulevard and High Street in East Oakland. In 2015 in the vicinity of 27th Street, 22,700 auto trips are forecasted along Telegraph and parallel arterials during the p.m. peak hour. By 2035, the number of auto trips on the same roadways is projected to reach 28,400, a 25 percent increase. In the vicinity of High Street, approximately 39,800 auto trips are forecasted to be using International Boulevard and parallel arterials in year 2015. By 2035 the volumes are projected to increase to 46,100, a 16 percent increase. No substantial improvements are planned in either corridor to increase the carrying capacity of either arterial network.

One outcome will be deteriorating roadway network performance, expressed in terms of intersection level of service (LOS). Of the 129 intersections analyzed for the preparation of this environmental document, the number operating at LOS E or F, the worst levels of service, is expected to steadily grow from 11 locations currently, to 17 locations in 2015, and to 42 locations in 2035 without implementation of BRT improvements. This increase means that by 2035, 33 percent of analyzed corridor intersections are expected to operate at extremely congested levels. Increasing travel demand also tends to expand peak congestion periods over several hours in the morning and evening. There is little opportunity to increase auto traffic capacity along corridor arterials without acquiring substantial amounts of right-of-way and relocating numerous residences and businesses. Increased congestion highlights the need to provide high capacity transit in a dedicated lane to allow buses to bypass congestion.

Improving transit service will provide travelers an alternative to driving in increasingly congested conditions. Investing in transit facilities and equipment would help transit to capture a larger share of the travel market, thus reducing the reliance on single-occupancy vehicles, improving the efficiency of the local roadway network, reducing the need for roadway expansion, and improving air quality. There is little opportunity to increase auto traffic capacity along corridor arterials without acquiring substantial amounts of right-of-way. This would require the relocation of numerous residences and businesses. Improving transit service will provide travelers an alternative to driving in increasingly congested conditions. Investing in transit facilities and equipment would help transit capture a larger share of the travel market, improve the efficiency of the local roadway network, reduce the need for roadway expansion and improve air quality.

CORRIDOR CHARACTERISTICS INDICATE ADDITIONAL DEMAND FOR TRANSIT

The proposed BRT corridor is home to important East Bay employment, educational, and activity centers where trip-making by workers, shoppers, students, visitors, and others is concentrated. The corridor connects the downtown central business districts of all three cities. These centers include a mix of activities and land uses in pedestrian-oriented, higher-density patterns of development. Several hospital complexes and numerous shopping districts, churches, civic centers, and entertainment/recreation facilities also are located within the corridor. The overall employment density was 14 jobs per acre in 2000, and ranged as high as 74 jobs per acre in downtown Oakland. The major areas of growth include downtown Oakland, North Oakland, the industrial areas of West and East Oakland, and the areas surrounding downtown San Leandro and the San Leandro BART station. These areas represent either locations zoned for higher density office and retail development (downtowns) or locations with a number of vacant or underused parcels (industrial areas that are transitioning to more specialized uses).

The corridor also includes several institutions of higher learning. Three of these—the University of California, Berkeley; Laney College; and Berkeley City College (formerly Vista College)—have a combined average weekday enrollment of approximately 49,000 students. In addition, the corridor is home to numerous middle and secondary schools. The combined average weekday enrollment at 10 public high schools and 10 public junior high schools/middle schools in the corridor is about 18,000 students.

Several key activity centers along the project corridor face growing constraints on auto access. These include the University of California, Berkeley; downtown Berkeley; expanding neighborhood retail and
commercial districts such as Temescal and Fruitvale in Oakland; and downtown San Leandro. The vitality of these centers will increasingly depend on accessibility by non-auto modes. The University of California, Berkeley, in a long-range development plan recently adopted, proposes growth in student population, and research and office space that would be acceptable to the City of Berkeley only if the concomitant increase in travel would not overtax the surrounding roadway network.

Of AC Transit's five highest-volume bus routes, two operate in the Berkeley-Oakland-San Leandro corridor—Routes 1 and 1R. These two routes carry approximately 25,000 riders per day in the corridor, or about one tenth of AC Transit's total daily ridership. There is a large existing overall travel market of 236,000 daily trips on all modes trying to reach major employment centers and educational institutions in the East Bay BRT corridor including downtown Oakland; the University of California, Berkeley; downtown Berkeley; and downtown San Leandro.

Transit ridership forecasts for 2035 show an increase in the number of average corridor boardings from approximately 25,000 (under existing conditions) to 34,000 per weekday for 2035 no-build conditions. Market analysis and customer preference research indicates that transit riders consider travel time and reliability as very important to their travel experience. To succeed in attracting people who currently drive to transit, service in the project corridor must be reliable and time-competitive. While corridor characteristics suggest that there is substantial corridor travel demand that could be served by transit, the existing service also lacks amenities that would make it more attractive to new riders. Bus stops lack shelters and benches, lighting, and security features. There are long queues to board, and limited capacity results in standing loads. As previously mentioned, bus speeds are slow and schedule adherence can be unreliable. These service characteristics can compromise the transit-riding experience, sending a new prospective rider back to the automobile. The proposed BRT project would result in an upgraded and streamlined service operating in dedicated lanes with modern station amenities including shelters, a place to sit, communications systems, ticket vending machines, real-time service information, lighting, and security features. BRT vehicles would be modern and rail-like, offering ease of boarding and reflecting a modern, high-tech transit riding experience.

Improved transit reliability and speed provided by BRT combined with increased passenger comfort and security while waiting for and riding on transit, and amenities such as real-time information would help to make transit a viable and competitive alternative to automobile travel in the corridor. This is indicated in modeling forecasts, which predict a nearly doubling of transit ridership in the corridor to approximately 62,000 per weekday in 2035 under the proposed project.

SUPPORT TRANSIT-ORIENTED RESIDENTIAL AND COMMERCIAL DEVELOPMENT OF THE CORRIDOR

The proposed project corridor is primarily an inner city route serving densely-populated neighborhoods. About half of the total population and employment of the Cities of Berkeley, Oakland, and San Leandro lies within the corridor. Half of the population lives north of the San Antonio area of the International Boulevard corridor and half live south of the San Antonio area. About 25 percent of the corridor population resides in the northern corridor—in north Oakland and Berkeley—and about 17 percent in the central corridor area in downtown Oakland.

Population densities, ranging from approximately 10 persons per acre on the low end to more than 60 persons per acre in the highest-density areas, are substantially higher than in the surrounding East Bay region. The highest density concentrations of population are located in and around Downtown Oakland, in Berkeley just south of the University of California, Berkeley, and the San Antonio and Fruitvale districts in Oakland.

During the next few decades, corridor population is projected to grow steadily, from 261,100 (2000 U.S. Census) to approximately 310,303 by 2035 (18.8 percent growth). Population growth will be highest in and around downtown Oakland, including Jack London Square, and along the project corridor through...
East Oakland and San Leandro where infill and redevelopment opportunities exist. Cities are attempting to focus this growth and improve the efficiency of the transportation network. Building upon strong existing transit-supportive land use patterns, the Cities of Berkeley, Oakland, and San Leandro are carrying out extensive development and redevelopment efforts along Telegraph Avenue, International Boulevard/East 14th Street, and other areas in the corridor. Land use and zoning policies encourage and promote higher-density, transit-oriented development in the downtown areas and along major arterial streets and transit corridors.

Much of the Oakland portion of the corridor lies within redevelopment project areas and a large part of the south corridor area is within Oakland’s Enterprise and Empowerment Zone. A major focus of Oakland’s updated General Plan policies is to invest in transit-oriented development at transit nodes and stations such as the Fruitvale Transit Village Phase I, in the Fruitvale BART Station area. To revitalize Fruitvale’s central business area, this 10-acre mixed-use project replaces an at-grade parking lot with commercial, retail, entertainment and other community-related uses. Fruitvale’s redevelopment plan includes more than 30,000 square feet of retail/restaurant space, 60,000 square feet of offices, a 40,000-square-foot health clinic, a 12,000-square-foot community resource center, a 5,000-square-foot library, and 47 residential live/work units. The two buildings house retail stores on the first level, community facilities on the second level, and innovative loft housing on the third level. The project was completed in June of 2004.

The corridor is already a strong market for transit, both for AC Transit’s local bus service and regional rail service provided by BART. By providing high quality, reliable, comfortable, and secure BRT service, the proposed project would support transit-oriented development by increasing access to jobs, education, and service markets. The placement of BRT infrastructure demonstrates an investment in the corridor and provides a greater sense of permanence than typical bus facilities. BRT facilities can help stimulate further transit-oriented development.

BETTER SERVE LOW-INCOME AND TRANSIT-DEPENDENT POPULATIONS IN THE PROJECT CORRIDOR

The population in the project corridor includes a large number of low income residents, seniors age 65 and older, youth and children age 18 and younger, and persons with disabilities. These population groups are less likely to have automobiles available; and therefore, are more likely to use transit. In fact, twenty percent of the households in the corridor are without private transportation. By improving access to important employment and educational centers in the East Bay, the BRT project would contribute to improved mobility and greater access to jobs and services for these corridor residents.

From the standpoint of environmental justice, which pertains to the effects of federal actions on minority and low income populations, the proposed project would be viewed favorably. Eight of nine communities, or sub areas, along the alignment are potential environmental justice communities because they contain 50 percent or more minority or low-income populations or the percentage of minority or low-income populations is more than 10 percentage points greater than the Alameda County average (data based on 2000 U.S. Census). In the long-term, these communities would receive greater benefits from the project than drawbacks. The major adverse effects of the project are temporary and would occur during construction, when traffic and, to some extent, bus service are disrupted by the transitway, BRT station, and roadway construction. Further, local access to businesses along the project alignment would be temporarily disrupted although detours and reroutes would be designated. In the long-term, the mobility benefits—from higher bus frequencies, shorter transit travel times, and increased transit capacity, among other benefits—are considerable. During the 2010 project meetings in Oakland, a concern was voiced that the BRT project could increase walking distances for the disabled, senior, and mobility impaired populations when local 1/1R bus stops along the corridor were removed and replaced by BRT stations. There are 47 BRT stations proposed along the 14.38-mile proposed project corridor. Average spacing is 0.31 miles or 1,650 feet.
Existing Route 1R has 31 stops from downtown Berkeley to downtown San Leandro near the San Leandro BART station (it does not stop at the station). Average spacing is 0.48 miles or 2,530 feet. Route 1 local service has numerous stops, 89 to 90 depending upon direction including the stop at San Leandro BART. Average spacing is 0.16 miles or approximately 865 feet. Thus, BRT stop spacing falls midway between existing Route 1R and Route 1 spacing. AC Transit intends to locate BRT stations where they are most convenient to users. Analysis of AC Transit survey data on Route 1R and Route 1 boardings and alightings shows that most BRT stations have been located where they will conveniently serve the most riders. Analysis of the stops used by Route 1R and Route 1 riders today and the proposed locations of BRT stations found that approximately 80 percent of riders would not need to change the location where they board and alight the bus when BRT is operational. About 20 percent of current riders would need to go to a new location. Some will experience no increase in walk distance; however, others may need to walk further than they do today. Depending on the stop location, the extra distance is estimated to be approximately one block.

3.4.2 PROCESS TO DEVELOP PREFERRED ALTERNATIVE

As part of the alternative development process, each of the respective cities in the corridor conducted public outreach to develop support for and refine the LPA that would become the proposed project approved in the Final EIS/EIR. In the fall of 2009, a series of public meetings were held in Berkeley and San Leandro to determine public support for the BRT project in those communities and to seek city council support for the proposed project. A similar series of meetings was held in Oakland in early 2010. Subsequently, in spring 2010, each city took action to recommend to AC Transit its configuration for the LPA/proposed project. On April 20, 2010, the City of Oakland endorsed the full BRT project as proposed by AC Transit for the corridor between Berkeley and San Leandro with refinements to BRT station locations, bike lanes, BRT, and traffic lane striping within the city limits. These refinements were developed during the city's public outreach process. The project characteristics in Oakland include dedicated travel lanes, level boarding platforms, off-board fare collection, and real-time arrival signs, among other amenities. The city reserved the right to make further changes to the proposed project when the Final EIS/EIR was completed and issued for review. The city also requested that in conjunction with the Final EIS/EIR process, AC Transit study a modified rapid bus option within the city's limits that would not provide dedicated BRT lanes. Under what is now known as the Oakland Bus Bulbs Alternative, buses would operate in mixed-flow lanes, as under existing conditions, and stop at level boarding, curb extension stations with expanded amenities such as ticket vending machines for self-service, off-board ticket vending, and fare collection. The findings of this study are available for AC Transit in a report entitled AC Transit Oakland Bus Bulbs Analysis: Telegraph-International Corridor (Cambridge Systematics, 2010).

At the Berkeley City Council meeting on April 29, 2010, the council voted unanimously to support a new alternative with a mix of transit and mostly non-transit elements, called “Alternative B.” The full-build option in Berkeley, which would have included dedicated lanes for BRT from downtown Berkeley to the city limit with Oakland at Woolsey Street, including new transit stations, was not passed for study. Alternative B would have no dedicated bus lanes on Telegraph Avenue and Shattuck Avenue, with extension of the proposed project beyond University Avenue or Shattuck Avenue. It also called for the conversion of Bancroft Way, Durant Avenue, and southbound Shattuck Avenue, between University Avenue and Center Street, from one-way to two-way operations, requiring installation of up to 10 new traffic signals. As further refinements to Alternative B, the city recommended that AC Transit evaluate, if "technically or financially feasible” curb extension stations with platforms level with the bus floor and bus queue jump lanes to bypass auto traffic at congested intersections.

On May 17, 2010, the City of San Leandro defined its proposed project as BRT terminating at the downtown San Leandro BART station with dedicated bus lanes from the north city limit to approximately Georgia Way. South of the San Leandro BART station local service would be provided by local bus
service to the Bayfair BART station. The city requested that AC Transit evaluate extending BRT to the Bayfair BART station in the Final EIS/EIR. Extended service would operate in dedicated bus lanes from the north city limit to Georgia Way and from Blossom Way to Bancroft Avenue. The city supported the addition of new traffic signals and queue jump lanes that would reduce the delays to BRT caused by traffic at intersections. The city reserved the right to make changes to the preferred alternative at the conclusion of the Final EIS/EIR based on the studied impacts and the adequacy of proposed mitigations of these impacts.

Based on the actions of the three cities in the corridor, the preferred alternative would have dedicated bus travel lanes throughout most of Oakland and in north San Leandro, but not in Berkeley. The project in Oakland and San Leandro would have level boarding. In Berkeley, level boarding was subject to evaluation. In all three cities, passenger station amenities were to include off-board fare collection and real-time passenger information signs indicating bus arrival as well as other amenities.

The AC Transit Board of Directors gave consideration to the recommendations of each city and made their proposed project decision for the project on June 23, 2010. The proposed project adopted by the AC Transit Board is consistent with the recommended alternatives of each city, with the exception of the City of Berkeley. AC Transit staff recommended against Berkeley’s adopted alternative because the conversion of one-way streets to two-way operations, as included in Berkeley’s approved Alternative B would not be eligible for Federal Transit Administration (FTA) Small Starts funding, for which AC Transit is seeking funds for BRT implementation. In addition, the Berkeley recommendations would not benefit BRT operation but rather would be detrimental to transit riders and the efficiency of transit operations. Conversion to two-way operations with an accompanying reduction in travel lanes could slow down bus operation and expose transit vehicles to more conflicts with other motor vehicles. The transit elements proposed by Berkeley for Telegraph Avenue would not improve performance sufficiently to offset the slower speeds in the southside and downtown areas. Thus, Berkeley’s proposal would likely lower the project’s cost-effectiveness rating and reduce funding available to the project overall, while delivering no significant improvement for transit riders. Instead of Alternative B, staff recommended and AC Transit adopted as part of the proposed project, a limited improvement alternative, which included the minimum features required to allow consistent, although less optimal, service with the rest of the corridor.

The proposed project under consideration in the Final EIS/EIR, as adopted by AC Transit, includes limited BRT improvements from downtown Berkeley to the Berkeley-Oakland border. Consistent with Berkeley City Council direction, no dedicated lanes for BRT vehicles are part of the project improvements. Station investments will include some enhancement of four existing and two new sidewalk bus stops. Ticket vending machines would be provided to support off-board, self-service fare collection. Real-time passenger information and passenger shelters will be included at each stop, as currently provided at many existing 1R rapid bus stops. The June 2010 resolution (No. 10-033) called for curb extension stations with level boarding platforms where feasible. The Board later reconsidered this feature, and at the September 29, 2010, meeting amended the action to have sidewalk stops with curb level boarding only (No. 10-049). The stops are to still include ticket vending, passenger information, and conventional bus stop shelters.

The project from downtown Berkeley to San Leandro is approximately 14.4 miles in length. General corridor wide elements proposed for Oakland and San Leandro are as follows:

- Dedicated median bus lanes for exclusive use by buses and emergency vehicles in most of the corridor (segments of the alignment with median bus lanes are referred to as median running transitways);
- Dedicated right-hand bus lanes on some segments that give preference to transit operations but permit right-turns and access to parking (segments of the alignment with shared right-hand bus lanes are referred to as side running transitways);
- Proof of payment ticket validation;
- Transit signal priority (TSP), new traffic signals, pedestrian signals, and transit-only signals;
- Real-time traveler information; and
- Pedestrian access and safety improvements at stations.

BRT stations in Oakland and San Leandro would include substantial shelters with extended canopies and amenities including lighting and security features (e.g., closed circuit television and emergency phones) for the comfort and convenience of passengers.

DOWNTOWN OAKLAND-SAN LEANDRO ALTERNATIVE (DOSL)

The AC Transit Board of Directors at its June 23, 2010 meeting provided direction on an additional alternative for study. This decision was made upon consideration of funding, community acceptance, and BRT operational issues associated with a major capital improvements project in the corridor from downtown Berkeley to San Leandro BART. The DOSL Alternative was recommended for study in the Final EIS/EIR as a lower cost alternative that could have fewer environmental effects and lower capital costs to implement compared to the proposed project. The DOSL follows the same alignment as the proposed project from downtown Oakland to San Leandro BART, and has the same features as the proposed project in this portion of the alignment. The DOSL Alternative is approximately 9.52 miles in length and includes 32 stations. No environmental impacts in addition to those evaluated as part of the proposed project would occur as a result of DOSL implementation. Thus, the environmental impact evaluation contained within the Final EIS/EIR represents the worst case scenario. No additional environmental review would be necessary if the DOSL were ultimately selected for implementation.

3.4.3 RECORD OF PROCEEDINGS

For purposes of CEQA and these Findings, the Record of Proceedings for the Proposed Action consists of the following documents, at a minimum:

- The NOP and all other public notices issued by AC Transit in conjunction with the project;
- The Draft EIR/EIS and Final EIR/EIS, including appendices and technical studies included or referenced in the Draft EIR/EIS and Final EIR/EIS;
- All comments submitted by agencies or members of the public during the 45-day public comment period on the Draft EIR/EIS;
- All comments and correspondence submitted to AC Transit with respect to the project, in addition to timely comments on the Draft EIR/EIS;
- The design measures incorporated into the project to avoid significant environmental impacts;
- All findings and resolutions adopted by the AC Transit decision makers in connection with the project, and all documents cited or referred therein;
- All final reports, studies, memoranda, maps, staff reports, or other planning documents relating to the project prepared by the AC Transit consulting team;
- All documents and information submitted to the AC Transit by responsible, trustee, or other public agencies, or by individuals or organizations, in connection with the project, up through the date AC Transit certified the FEIR/EIS;
- Minutes and/or verbatim transcripts of all information sessions, public meetings, and public hearings held by AC Transit, in connection with the Proposed Action;
- Any documentary or other evidence submitted to AC Transit at such information sessions, public meetings, and public hearings;
• Matters of common knowledge to AC Transit including, but not limited to, federal, state, and local laws and regulations;
• Any documents expressly cited in these Findings, in addition to those cited above; and
• Any other materials required for the Record of Proceedings by Public Resources Code Section 21167.6, subdivision (e).

The custodian of the documents comprising the Record of Proceedings is AC Transit, whose office is located at 1060 Franklin Street, 10th Floor, Oakland, CA, 94612. AC Transit has relied on all of the documents listed above in reaching its decision on the project, even if every document was not formally presented to AC Transit decision makers as part of AC Transit’s files generated in connection with the project. Without exception, any document set forth above that is not found in the project files falls into one of two categories. Many of the documents reflect prior planning or legislative decisions with which AC Transit was aware in certifying the FEIR/EIR (see City of Santa Cruz v. Local Agency Formation Commission (1978) 76 Cal.App.3d 381, 391-392; Dominey v. Department of Personnel Administration (1988) 205 Cal.App.3d 729, 738, fn. 6). Other documents influenced the expert advice provided to AC Transit staff or consultants, who then provided advice to AC Transit decision makers. For that reason, such documents form part of the underlying factual basis for AC Transit decision relating to the certification of the FEIS/EIR (see Public Resources Code, § 21167.6, subd.(e)(10); Browning-Ferris Industries v. City Council of City of San Jose (1986) 181 Cal.App.3d 852, 866; Stanislaus Audubon Society, Inc. v. County of Stanislaus (1995) 33 Cal.App.4th 144, 153, 155).
4 FINDINGS REQUIRED UNDER CEQA

Public Resources Code Section 21002 provides that "public agencies should not approve projects as proposed if there are feasible alternatives or feasible mitigation measures available that would substantially lessen the significant environmental effects of such projects[...]." The same statute states that the procedures required by CEQA "are intended to assist public agencies in systematically identifying both the significant effects of proposed projects and the feasible alternatives or feasible mitigation measures that will avoid or substantially lessen such significant effects." Section 21002 goes on to state that "in the event that specific economic, social, or other conditions make infeasible such project alternatives or such mitigation measures, individual projects may be approved in spite of one or more significant effects."

The mandate and principles in Public Resources Code Section 21002 are implemented, in part, through the requirement that agencies must adopt findings before approving projects for which EIRs are required (see Public Resources Code, § 21081, subd. (a); State CEQA Guidelines, § 15091, subd. (a)). For each significant environmental effect identified in an EIR for a proposed project, the approving agency must issue a written finding reaching one or more of three permissible conclusions. The first such finding is that "[c]hanges or alterations have been required in, or incorporated into, the project which avoid or substantially lessen the significant environmental effect as identified in the Final EIR" (State CEQA Guidelines, § 15091, subd. (a)(1)). The second permissible finding is that "[s]uch changes or alterations are within the responsibility and jurisdiction of another public agency and not the agency making the finding. Such changes have been adopted by such other agency or can and should be adopted by such other agency" (State CEQA Guidelines, § 15091, subd. (a)(2)). The third potential conclusion is that "[s]pecific economic, legal, social, technological, or other considerations, including provision of employment opportunities for highly trained workers, make infeasible the mitigation measures or project alternatives identified in the Final EIR" (State CEQA Guidelines, § 15091, subd. (a)(3)). Public Resources Code Section 21061.1 defines "feasible" to mean "capable of being accomplished in a successful manner within a reasonable period of time, taking into account economic, environmental, social and technological factors." State CEQA Guidelines Section 15364 adds another factor: "legal" considerations (see also Citizens of Goleta Valley v. Board of Supervisors (1990) 52 Cal.3d 553, 565).

The concept of "feasibility" also encompasses the question of whether a particular alternative or mitigation measure promotes the underlying goals and objectives of a project (City of Del Mar v. City of San Diego (1982) 133 Cal.App.3d 410, 417). "[F]easibility" under CEQA encompasses "desirability" to the extent that desirability is based on a reasonable balancing of the relevant economic, environmental, social, and technological factors" (Ibid.; see also Sequoyah Hills Homeowners Assn. v. City of Oakland (1993) 23 Cal.App.4th 704, 715).

The State CEQA Guidelines do not define the difference between "avoiding" a significant environmental effect and merely "substantially lessening" such an effect. AC Transit must, therefore, glean the meaning of these terms from the other contexts in which the terms are used. Public Resources Code Section 21081, on which State CEQA Guidelines Section 15091 is based, uses the term "mitigate" rather than "substantially lessen." Therefore, State CEQA Guidelines equate "mitigating" with "substantially lessening." Such an understanding of the statutory term is consistent with the policies underlying CEQA, which include the policy that "public agencies should not approve projects as proposed if there are feasible alternatives or feasible mitigation measures available that would substantially lessen the significant environmental effects of such projects" (Public Resources Code, § 21002).

For purposes of these Findings, the term "avoid" refers to the effectiveness of one or more mitigation measures to reduce an otherwise significant effect to a less than significant level. In contrast, the term "substantially lessen" refers to the effectiveness of such measure or measures to substantially reduce the
severity of a significant effect, but not to reduce that effect to a less than significant level. These interpretations appear to be mandated by the holding in *Laurel Hills Homeowners Association v. City Council* (1978) 83 Cal.App.3d 515, 519-527, in which the Court of Appeal held that an agency had satisfied its obligation to substantially lessen or avoid significant effects by adopting numerous mitigation measures, not all of which rendered the significant impacts in question less than significant.

Although State CEQA Guidelines Section 15091 requires only that approving agencies specify that a particular significant effect is “avoid[ed] or substantially lessen[ed],” these Findings, for purposes of clarity, in each case will specify whether the effect in question has been reduced to a less than significant level or has simply been substantially lessened but remains significant. Moreover, although Section 15091, read literally, does not require findings to address environmental effects that an EIR identifies as merely “potentially significant,” these Findings will nevertheless fully account for all such effects identified in the Final EIR/EIS. In short, CEQA requires that the lead agency adopt mitigation measures or alternatives, where feasible, to substantially lessen or avoid significant environmental impacts that would otherwise occur. Certain project modifications or the adoption of certain mitigation measures or alternatives are not required, however, where such actions are infeasible or where the responsibility for implementation lies with some other agency (State CEQA Guidelines, § 15091, subd. (a), (b)).

With respect to a project for which significant impacts are not avoided or substantially lessened, either through the adoption of feasible mitigation measures or a feasible environmentally superior alternative, a public agency, after adopting proper findings, may nevertheless approve the project if the agency first adopts a statement of overriding considerations setting forth the specific reasons why the agency found that the project’s “benefits” rendered “acceptable” its “unavoidable adverse environmental effects” (State CEQA Guidelines, §§ 15093, 15043, subd. (b); see also Public Resources Code, § 21081, subd. (b). The California Supreme Court has stated that, “[t]he wisdom of approving... any development project, a delicate task which requires a balancing of interests, is necessarily left to the sound discretion of the local officials and their constituents who are responsible for such decisions. The law as we interpret and apply it simply requires that those decisions be informed; and therefore, balanced” (*Goleta, supra*, 52 Cal.3d 553, 576).
5 **LEGAL EFFECTS OF FINDINGS**

To the extent these Findings conclude that various project design features and mitigation measures outlined in the Final EIR/EIS are feasible and have not been modified, superseded, or withdrawn, AC Transit hereby binds itself to implement these measures. These Findings, in other words, are not merely informational, but rather constitute a binding set of obligations that will come into effect when AC Transit certifies the Final EIR/EIS.

Project design features and mitigation measures are included in the Mitigation Monitoring and Reporting Program (MMRP) adopted concurrently with these Findings, and will be effectuated through the process of constructing and implementing the project. In addition to the design features and mitigation measures, AC Transit’s Standard Specifications applicable to the project will be included in the project construction documents to reduce environmental impacts associated with the project.
6 MITIGATION MONITORING AND REPORTING PROGRAM

A Mitigation Monitoring and Reporting Program (MMRP) has been prepared for the proposed project as defined within the Final EIS/EIR and adopted concurrently with these Findings (see Public Resources Code, § 21081.6, subd. (a)(1)). The MMRP includes project design features and mitigation measures incorporated into the project to avoid or substantially lessen significant environmental effects, as outlined in the Final EIR/EIS. AC Transit will use the MMRP, which is a separate, stand-alone document, to track compliance with the adopted design features and mitigation measures. The MMRP will remain available for public review during the compliance period.
7 FINDINGS

This section provides an overview of potentially significant environmental impacts and design features that would be implemented to reduce impacts to less than significant. For impacts that would not be significant, a brief justification of the finding is provided. The Findings discussion addresses only those environmental resources for which potentially significant impacts could occur during either construction or implementation. Thresholds of significance as defined in Appendix G of the CEQA Guidelines are used to structure the Findings discussion.

7.1 SIGNIFICANT EFFECTS AND MITIGATION MEASURES

7.1.1 AESTHETICS/VISUAL

THRESHOLDS OF SIGNIFICANCE

Thresholds used to evaluate potential aesthetic/visual quality impacts are based on applicable criteria in the State CEQA Guidelines (CCR §§15000-15387), Appendix G. A significant aesthetic/visual quality impact would occur if the proposed project or DOSL Alternative would:

1) Have a substantial adverse effect on a scenic vista?
2) Substantially damage scenic resources, including, but not limited to, trees, rock outcroppings, and historic buildings within a state scenic highway?
3) Substantially degrade the existing visual character or quality of the site and its surroundings?
4) Create a new source of substantial light or glare which would adversely affect day or nighttime views in the area?

IMPACT

Threshold 1: The proposed project or DOSL Alternative would not have a substantial adverse effect on scenic vistas; therefore, this issue is not addressed in these Findings.

Threshold 2: The project or DOSL Alternative would not impact scenic resources, including trees, rock outcroppings and historic buildings; therefore, this issue is not addressed in these Findings.

Threshold 3: The proposed project or DOSL Alternative would not result in a substantial change to the visual character of the corridor as a whole. However, some streetscape elements that contribute to the visual character would be removed. This could adversely affect the visual environment of these specific locations. Implementation of design features identified below would reduce potential aesthetic impacts to less than significant.

Threshold 4: The proposed project or DOSL Alternative would not have an adverse effect on light and glare; therefore, this issue is not addressed in these Findings.

FINDINGS

The analysis concluded that impacts would be less than significant for Thresholds 1, 2 and 4; therefore, no mitigation measures are required.

EXPLANATION

Threshold 1: Have a substantial adverse effect on a scenic vista?
Viewpoint 1: 48th Street at Telegraph Avenue

Viewpoint 1 represents a proposed station located on Telegraph Avenue at the 48th Street intersection within the North Telegraph, Oakland (Woolsey Street to Hwy 24/55th Street) landscape unit. There are fewer trees lining the street at this location than shown in the draft EIS/EIR simulation for this viewpoint. A few more historic buildings are present; however, these buildings are scattered among more modern buildings detracting from the overall unity of views within this area. The commercial and residential properties and the roadway travel lanes are the dominant visual elements within this view. The visual change with implementation of the proposed project would be negligible at this viewpoint.

Viewpoint 2: Telegraph Avenue and Hawthorne Street

Viewpoint 2 represents a proposed station located on Telegraph Avenue at the Hawthorne Street intersection within the Telegraph/MacArthur (44th Street to I-580/34th Street) landscape unit. Unlike the previous station location depicted in the draft EIS/EIR, there are few trees lining Telegraph Avenue. Historic buildings are present on the west side of Telegraph Avenue; however, the intactness of any historic character is highly compromised by an obstructing modern commercial structure and billboard. The roadway travel lanes dominate this view. The visual change with implementation of the proposed project would be negligible at this viewpoint.

Viewpoint 3: 11th Street at Harrison Street

Viewpoint 3 is located on 11th Street at Harrison Street within the Chinatown/Jack London Square (11th & 12th Streets to 2nd Avenue) landscape unit. In this viewpoint, tall buildings further west on Harrison Street are the dominant visual features, resulting in a medium level of vividness for this view. Portions of the Oakland Tribune tower also are visible from this intersection. The overall visual character is a busy urban commuting corridor with unique Chinatown markets and signage. The visual change with implementation of the proposed project would be negligible at this viewpoint.

Viewpoint 4: International Boulevard at 34th Avenue

Viewpoint 4 represents a proposed station located on International Boulevard at the 34th Avenue intersection within the Fruitvale (30th Avenue to 42nd Avenue) landscape unit. The visual character and quality at this proposed station location remains consistent with the description in the 2005 Visual Impact Assessment and draft EIS/EIR. Overall, the character of the visual environment somewhat resembles a small town commercial corridor due to various aesthetic streetscape elements including a landscaped median, decorative street lights, and benches. The street trees are a dominant visual feature as well as the four-lane roadway and parked vehicles.

The proposed project would extend the length of median landscaping to the north of the BRT station towards Fruitvale Avenue. It will also extend the landscaped median south of the station, beginning at 36th Avenue. These improvements would offset the visual impacts of the proposed station facilities within this landscape unit.

Viewpoint 5: International Boulevard at 82nd Avenue

Viewpoint 5 is located on International Boulevard at 82nd Avenue within the International –Elmhurst (73rd Avenue to city limit) landscape unit. A colorful mural at the East Oakland Youth Development Center, a brightly painted commercial building and “Walgreens” retail store are dominant features within this viewpoint. These colorful elements as well as the mature trees and shrubs in the raised median and along the sidewalks result in a medium to high vividness rating. The four-lane roadway, parked cars, and billboard contribute to the urban character of this view. A small view of the Oakland Hills to the east also is present. Overall, the proposed project will result in a slightly adverse effect on visual quality of this view.
Viewpoint 6: International Boulevard at 99th Avenue

Viewpoint 6 is located on International Boulevard at the 99th Avenue intersection within the International – Elmhurst (73rd Avenue to city limit) landscape unit. Under the proposed project, the proposed station location remains the same as that identified in the draft EIR/EIS. This area is characterized by an urban commercial-industrial corridor; however, the rows of large trees that run the length of International Boulevard dominate the view as they provide screening to the uses along the corridor. The overall change to visual character and quality at this location will be adverse.

Viewpoint 7: International Boulevard at Durant Avenue

This viewpoint is located on International Boulevard at Durant Avenue within the San Leandro North (Oakland-San Leandro city limit to Davis Street and San Leandro BART) landscape unit. The grassy median, roadway, frontage road, and street trees are dominant features within this viewpoint. The City of San Leandro Monument can be seen in the background. Adjacent businesses and residences are largely limited to a single story and comprise less dominant features within this viewpoint. Overall, the proposed project will result in a slightly adverse effect on the visual quality of this view.

Viewpoint 8: East 14th Street at Haas Avenue

Viewpoint 8 is located near city hall on East 14th Street at Haas Avenue within the San Leandro North (East 14th Street, city limit to Davis Street) landscape unit. The visual character of this viewpoint is that of a historic, well maintained downtown area resulting in high intactness and unity. Mature trees line each side of the roadway, which is comprised of one travel lane in each direction, a left-turn lane, and on-street parking. The proposed project will have a slightly beneficial effect on visual quality.

Threshold 2: Substantially damage scenic resources, including, but not limited to, trees, rock outcroppings, and historic buildings within a state scenic highway?

As discussed herein, the only trees that would be adversely affected by the proposed project or DOSL Alternative are landscaped street trees. All trees removed would be replaced as part of the overall scope of improvements. The study area is a highly urbanized transportation corridor. No rock outcroppings occur within or in proximity to the study area. While historic buildings occur adjacent to the northern portion of the corridor, they do not occur along a scenic highway nor would they be adversely affected by the proposed project or DOSL.

Threshold 4: Create a new source of substantial light or glare which would adversely affect day or nighttime views in the area?

All corridor improvements would occur within an urban setting. Existing light sources include street lighting, vehicle headlights and building lights. The proposed project and DOSL would add lighting where needed for security at new station locations; however, it be consistent with the existing urban setting. No new sources of substantial light and glare would occur with the proposed project or DOSL.

CUMULATIVE IMPACTS

Cumulative impacts identified in Section 5.3 of the Draft EIS/EIR were evaluated for the potential to add to impacts of the proposed East Bay BRT Project as described in Chapters 3 and 4 of the Final EIS/EIR. Most of the projects were determined not to contribute substantially to cumulative impacts in any environmental category when combined with the proposed East Bay BRT Project as defined in the Draft EIS/EIR, with the exception of two proposed projects – the East 14th Street North Area Study in San Leandro, and the bicycle lane project along Telegraph Avenue between Aileen Street/State Route 24 and 16th Street in Oakland. Revisions to the proposed project and DOSL Alternative that occurred after circulation of the Draft EIS/EIR have eliminated the potential for cumulative impacts. No cumulative aesthetic/visual resource impacts would occur as a result of the proposed project or DOSL.
PROJECT DESIGN FEATURES

CONSTRUCTION

Station amenities will be designed in coordination with the cities of Berkeley, Oakland, and San Leandro. Materials will not be stockpiled on site, and demolition materials will be hauled away. Debris will be cleared daily. Best Management Practices will be implemented to protect mature trees, other vegetation, and the existing streetscape during construction.

The proposed project will remove or relocate landscaping and other urban design treatments in several locations within the areas listed below:

- Telegraph Avenue, Oakland;
- International Boulevard, Oakland; and
- East 14th Street, San Leandro.

Minor median treatments for channeling traffic, such as along Telegraph Avenue in North Oakland, will not be replaced. The proposed project will include substantial landscape improvements that will replace the landscaped features removed in all but one location. The location where landscaping will not be replaced is:

- East 14th Street median landscaping between Bristol Boulevard and Durant Avenue at the Oakland/San Leandro city limit. The median will not be replaced under the proposed project. It will, however, be retained south of the BRT station at Durant Avenue and continue to the City of San Leandro monument at Broadmoor Boulevard. The project proposes to avoid moving the monument by designing the BRT transitway to go around the monument.

Between Bristol and Durant, there is insufficient roadway width to provide, in the same section, traffic lanes, the BRT transitway, and landscape improvements. Limited landscaping is proposed in this section. Roadway widening and right-of-way acquisition would be necessary but is not considered practicable; therefore, landscaping cannot be replaced. Landscaping to be provided as part of the proposed project will be larger than the total area removed. One of the design objectives of the East Bay BRT project is to enhance the attractiveness of the street section, making it more appealing to users and local businesses and residents.

OPERATION

Operation of the proposed project and DOSL would have no adverse impact to visual or aesthetic resources.

MITIGATION MEASURES

Implementation of the design standards referenced above would reduce potential aesthetics and visual quality impacts to less than significant levels; therefore, no mitigation measures are required.

RESIDUAL IMPACTS AFTER MITIGATION

No residual impacts would occur.

7.1.2 AIR QUALITY

THRESHOLDS OF SIGNIFICANCE

Thresholds used to evaluate potential air quality impacts are based on applicable criteria in the State CEQA Guidelines (CCR §§15000-15387), Appendix G. A significant air quality would occur if the proposed project or DOSL Alternative would:
1) Conflict with or obstruct implementation of the applicable air quality plan;

2) Violate any air quality standard or contribute substantially to an existing or projected air quality violation;

3) Result in a cumulatively considerable net increase of any criteria pollutant for which the project region is non-attainment under an applicable federal or state ambient air quality standard (including releasing emissions, which exceed quantitative thresholds for ozone precursors);

4) Expose sensitive receptors to substantial pollutant concentrations; and

5) Create objectionable odors affecting a substantial number of people?

IMPACT

Threshold 1: The proposed project or DOSL Alternative would not conflict with or obstruct implementation of an air quality plan. Thus, this issue is not addressed in these Findings.

Threshold 2: The proposed project or DOSL Alternative would not result in a violation of an air quality standard or contribute significantly to an existing or projected air quality violation. However, construction of the proposed project or DOSL Alternative has the potential to create air quality impacts through the use of heavy-duty construction equipment and through vehicle trips generated by construction workers traveling to and from the proposed project or DOSL Alternative site. Construction activity would generate regional emissions, toxic air contaminant (TAC) emissions, and odors. It also would increase localized pollutant concentrations near construction. Construction emissions would be temporary, and not result in any long-term impacts. The implementation of Best Management Practices defined below under Project Design features would reduce potential short-term construction impacts to less than significant.

Threshold 3: The proposed project or DOSL Alternative would decrease regional emissions because regional Vehicle Miles Traveled (VMT) would be reduced with project implementation. Thus, this issue is not addressed in these Findings.

Threshold 4: Modeled carbon monoxide concentrations would be well below state and federal standards. This issue is not addressed in these Findings.

Threshold 5: The proposed project or DOSL Alternative would provide enhanced transit services within the study corridor. The project would not generate odors; thus, this issue is not addressed in these Findings.

FINDINGS

The analysis concluded that impacts would be less than significant for Thresholds 1, 3, 4 and 5; therefore, no mitigation measures are required.

EXPLANATION

Threshold 1: Conflict with or obstruct implementation of the applicable air quality plan;

The Bay Area Air Quality Management District (BAAQMD), in coordination with the Metropolitan Transportation Commission (MTC) and the Association of Bay Area Governments (ABAG), is responsible for preparing air quality plans pursuant to the federal Clean Air Act (CAA) and California CAA. Under the CAA, state implementation plans (SIPs) are required for areas that are designated as nonattainment for ozone (O₃), carbon monoxide (CO), nitrogen oxides (NOₓ), sulfur oxide (SOₓ), Particulate (PM) Matter₁₀, or PM₂·₅. For the Bay Area Air Basin, a SIP is required for O₃ and PM₂·₅ since the region is currently designated as a federal nonattainment area for both criteria pollutants.

The proposed project was included in the regional emissions analysis completed by the MTC for the conforming Transportation 2035 Plan. The design concept and scope have not changed significantly from what was analyzed in the Transportation 2035 Plan. This analysis found that the plan; and, therefore, the
individual projects contained in the plan, are conforming projects and will have air quality impacts consistent with those identified in the SIP for achieving the National Ambient Air Quality Standards (NAAQS). The Federal Highway Administration (FHWA) determined the Transportation 2035 Plan to conform to the SIP in May, 2009.

The proposed project also is included in the federal 2009 Transportation Improvement Program (TIP). The “open-to-the-public-year” is consistent with (within the same regional emission analysis period as) the construction completion date identified in the federal TIP and Transportation 2035 Plan. The federal TIP gives priority to eligible transportation control measures identified in the SIP and provides sufficient funds to provide for their implementation. FHWA and FTA determined the TIP to conform to the SIP on November 17, 2008. The proposed project or DOSL Alternative is consistent with regional conformity guidelines; and thus, would not conflict with or obstruct SIP implementation.

The proposed project or DOSL Alternative would not cause an exceedance of the California or NAAQS for criteria pollutants or the BAAQMD thresholds for O₃ precursor emissions and PM2.5.

Threshold 3: Result in a cumulatively considerable net increase of any criteria pollutant for which the project region is non-attainment under an applicable federal or state ambient air quality standard (including releasing emissions, which exceed quantitative thresholds for ozone precursors);

The Final EIS/EIR analysis considered emissions from all vehicles in the corridor (not only buses). Implementation of the proposed project or DOSL Alternative would reduce regional VMT and associated regional emissions. Thus, the proposed project or DOSL Alternative would result in a less-than-significant impact related to operational emissions.

Threshold 4: Expose sensitive receptors to substantial pollutant concentrations?

As shown in Tables 4.12-10-4.12-12 of the Final EIS/EIR, the proposed project or DOSL Alternative would not cause an exceedance of applicable air quality standards or significance thresholds.

Threshold 5: Create objectionable odors affecting a substantial number of people?

Land uses and industrial operations that are associated with odor complaints include wastewater treatment plants, landfills, confined animal facilities, composting stations, food manufacturing plants, refineries, and chemical plants. The proposed project or DOSL Alternative does not include any land use or activity that typically generates adverse odors; therefore, the project would result in a less-than-significant impact related to odor emissions.

CUMULATIVE IMPACTS

Cumulative impacts identified in Section 5.3 of the Final EIS/EIR were evaluated for the potential to add to impacts of the proposed East Bay BRT Project as described in Chapters 3 and 4 of the Final EIS/EIR. Most of the projects were determined not to contribute substantially to cumulative impacts in any environmental category when combined with the proposed East Bay BRT Project as defined in the Draft EIS/EIR, with the exception of two proposed projects – the East 14th Street North Area Study in San Leandro, and the bicycle lane project along Telegraph Avenue between Aileen Street/State Route 24 and 16th Street in Oakland. Revisions to the proposed project and DOSL Alternative that occurred after circulation of the Draft EIS/EIR have eliminated the potential for cumulative impacts. No cumulative air quality impacts would occur as a result of the proposed project or DOSL.

DESIGN FEATURES

CONSTRUCTION

Construction contractors shall implement the BAAQMD Basic Construction Mitigation Measures listed in Table 4.17-2 of the Final EIS/EIR, and the applicable Additional Construction Mitigation Measures. The following controls should be implemented at all construction sites:
- All exposed surfaces (e.g., parking areas, staging areas, soil piles, graded areas, and unpaved access roads) shall be watered two times per day.
- All haul trucks transporting soil, sand, or other loose material off-site shall be covered.
- All visible mud or dirt track-out onto adjacent public roads shall be removed using wet power vacuum street sweepers at least once per day. The use of dry power sweeping is prohibited.
- All vehicle speeds on unpaved roads shall be limited to 15 mph.
- All roadways, driveways, and sidewalks to be paved shall be completed as soon as possible. Building pads shall be laid as soon as possible after grading unless seeding or soil binders are used.
- Idling times shall be minimized either by shutting equipment off when not in use or reducing the maximum idling time to 5 minutes (as required by the California airborne toxics control measure Title 13, Section 2485 of California Code of Regulations [CCR]).
- Clear signage shall be provided for construction workers at all access points.
- All construction equipment shall be maintained and properly tuned in accordance with manufacturer's specifications. All equipment shall be checked by a certified mechanic and determined to be running in proper condition prior to operation.
- Post a publicly visible sign with the telephone number and person to contact at the lead agency regarding dust complaints. This person shall respond and take corrective action within 48 hours. The Air District's phone number also shall be visible to ensure compliance with applicable regulations.

The following measures are recommended for projects with construction emissions above the threshold:
- All exposed surfaces shall be watered at a frequency adequate to maintain minimum soil moisture of 12 percent. Moisture content can be verified by lab samples or moisture probe.
- All excavation, grading, and/or demolition activities shall be suspended when average wind speeds exceed 20 mph.
- Wind breaks (e.g., trees and fences) shall be installed on the windward side(s) of actively disturbed areas of construction. Wind breaks should have at maximum 50 percent air porosity.
- Vegetative ground cover (e.g., fast-germinating native grass seed) shall be planted in disturbed areas as soon as possible and watered appropriately until vegetation is established.
- The simultaneous occurrence of excavation, grading, and ground-disturbing construction activities on the same area at any one time shall be limited. Activities shall be phased to reduce the amount of disturbed surfaces at any one time.
- All trucks and equipment, including their tires, shall be washed off prior to leaving the site.
- Site accesses to a distance of 100 feet from the paved road shall be treated with a 6 inch to 12 inch compacted layer of wood chips, mulch, or gravel.
- Sandbags or other erosion control measures shall be installed to prevent silt runoff to public roadways from sites with a slope greater than 1 percent.
- Minimize the idling time of diesel powered construction equipment to two minutes.
- The project shall develop a plan demonstrating that the off-road equipment (more than 50 horsepower) to be used in the construction project (e.g., owned, leased, and subcontractor vehicles) would achieve a project wide fleet-average 20 percent NOX reduction and 45 percent PM reduction compared to the most recent ARB fleet average. Acceptable options for reducing emissions include the use of late model engines, low-emission diesel products, alternative fuels,
engine retrofit technology, after-treatment products, add-on devices such as particulate filters, and/or other options as such become available.

- Use low volatile organic compound (VOC) (i.e., reactive organic gases) coatings beyond the local requirements (i.e., Regulation 8, Rule 3: Architectural Coatings).
- All construction equipment, diesel trucks, and generators shall be equipped with best available control technology for emission reductions of NOx and PM.
- All contractors shall use equipment that meets California Air Resources Board's most recent certification standard for off-road heavy duty diesel engines.

Construction contractors shall comply with BAAQMD Regulation 11 (Hazardous Pollutants) Rule 2 (Asbestos Demolition, Renovation, and Manufacturing). The requirements for demolition activities include removal standards, reporting requirements, and mandatory monitoring and record keeping.

The Final EIR/EIS also includes the following avoidance, minimization and control measures to reduce air emissions associated with project construction:

- All active construction areas shall be watered at least twice daily;
- All trucks hauling soil, sand, and other loose materials shall be covered and shall maintain at least two feet of freeboard.
- All unpaved access roads, parking areas, and staging areas in the construction area shall be watered at least three times daily or shall be applied with non-toxic soil stabilizers.
- All paved access roads, parking areas, and staging areas in the construction area shall be swept daily with water sweepers.
- Streets shall be swept daily with water sweepers if visible soil material is carried onto adjacent public streets.
- Non-toxic soil stabilizers shall be applied to inactive construction areas (previously graded areas that are inactive for 10 days or more).
- Exposed stockpiles of dirt, sand, or debris shall be enclosed, covered, watered at least twice daily, or applied with non-toxic soil binders.
- Traffic speeds on unpaved roads shall be limited to 15 mph.
- Wheel washers shall be installed on all trucks or tires/tracks of all trucks, and equipment leaving the construction area shall be washed.
- Excavation and grading activities shall be suspended when winds exceed 25 mph.
- Construction equipment shall use cool exhaust gas recirculation.
- Construction equipment shall use aqueous diesel fuel.
- Construction contracts shall explicitly stipulate that all construction equipment shall be properly tuned and maintained.

OPERATION

No measures are required to reduce air emissions during operation.

MITIGATION MEASURES

Implementation of the design standards referenced above would reduce potential air quality impacts during construction to less than significant levels; therefore, no mitigation measures are required.
RESIDUAL IMPACTS AFTER MITIGATION

No residual impacts would occur.

7.1.3 BIOLOGICAL RESOURCES

THRESHOLDS OF SIGNIFICANCE

Thresholds used to evaluate potential impacts on biological resources are based on applicable criteria in the State CEQA Guidelines (CCR §§15000-15387), Appendix G. A significant impact on biological resources would occur if the proposed project or DOSL Alternative would:

1) Have a substantial adverse effect, either directly or through habitat modifications, on any species identified as a candidate, sensitive, or special status species in local or regional plans, policies, or regulations, or by the California Department of Fish and Game (CDF&G) or U.S. Fish and Wildlife Service (USFWS);

2) Have a substantial adverse effect on any riparian habitat or other sensitive natural community identified in local or regional plans, policies, and regulations or by the California Department of Fish and Game or U.S. Fish and Wildlife Service;

3) Have a substantial adverse effect on federally protected wetlands as defined by Section 404 of the Clean Water Act (including, but not limited to, marsh, vernal pool, coastal, etc.) through direct removal, filling, hydrological interruption, or other means;

4) Interfere substantially with the movement of any native resident or migratory fish or wildlife species or with established native resident or migratory wildlife corridors, or impede the use of wildlife nursery sites;

5) Conflict with any local policies or ordinances protecting biological resources, such as a tree preservation policy or ordinance; or

6) Conflict with the provisions of an adopted Habitat Conservation Plan, Natural Community Conservation Plan, or other approved local, regional, or state habitat conservation plan.

IMPACT

Threshold 1: No wetland resources, plants or wildlife species are known to occur within the area affected by the proposed project or DOSL Alternative. However, landscape trees would be removed during construction. These trees could contain nesting birds subject to protection per the Migratory Bird Treaty Act. Implementation of design features described below would reduce potential migratory bird impacts to less than significant.

Threshold 2: No riparian areas or other sensitive communities occur where project improvements are proposed. Thus, this issue is not addressed in these Findings.

Threshold 3: No federally protected wetland resources are located in areas where proposed project or DOSL Alternative improvements would occur. Thus, this issue is not addressed in these Findings.

Threshold 4: There are no known wildlife migration corridors and/or nursery sites located within the area affected by proposed project or DOSL Alternative improvements. Thus, this issue is not addressed in these Findings.

Threshold 5: No Habitat Conservation Plans, Natural Community Conservation Plans or related plans and policies apply to resources with the study area. Thus, this issue is not addressed in these Findings.

FINDINGS

The analysis concluded that impacts would be less than significant for Thresholds 2, 3, 4 and 5; therefore, no mitigation measures are required.
EXPLANATION

Threshold 2: Have a substantial adverse effect on any riparian habitat or other sensitive natural community identified in local or regional plans, policies, and regulations or by the California Department of Fish and Game or U.S. Fish and Wildlife Service.

The Biological Study Area (BSA) consists primarily of developed land, landscaped areas, and channelized creek crossings. Review of California Natural Diversity Database (CNNDDB), USFWS species list for Alameda County, and California Native Plant Society Electronic Inventory (CNPSEl) 2010 identified two sensitive plant species (i.e., western leatherwood [Dirca occidentalis] and Loma Prieta hoit [Hoita strobilina]) that have the potential to occur within proximity to the BSA. The habitat types described above are not riparian or located within the BSA.

Threshold 3: Have a substantial adverse effect on federally protected wetlands as defined by Section 404 of the Clean Water Act (including, but not limited to, marsh, vernal pool, coastal, etc.) through direct removal, filling, hydrological interruption, or other means.

The proposed project and DOSL Alternative is located within an urbanized area containing roads, curb, gutter, sidewalk, light poles, buildings, parking lots, and other urban features. The primary land cover within the BSA is developed (i.e., hardscaped and compacted areas) and landscaped. The BSA is within the San Francisco Bay watershed. The natural drainage historically consisted of small- to medium-sized creeks that flowed westerly from the hills in the east to San Francisco Bay. Implementation of the proposed project or DOSL Alternative would not result in the deposition of dredge or fill material to any potentially jurisdictional wetland or water features, nor would it modify any existing culvert, outlet, or water channel.

If the proposed project or DOSL Alternative cumulatively disturbs more than one acre, it would require coverage under the California State Water Board Construction General Permit (2009-0009-DWQ) to minimize potential impacts to surface water resources adjacent to improvement areas. Pollution control Best Management Practices (BMP’s) would be documented in a Stormwater Pollution Prevention Plan (SWPPP) that would be prepared for the proposed project or DOSL Alternative. Multiple SWPPP’s may be required depending on whether simultaneous construction occurs within different segments of the corridor. Additional BMPs addressing waste management and pollution control, non-storm water control, wind erosion and tracking will also be included in the SWPPP. Implementation of BMPs would minimize the potential for the violation of water quality standards during construction.

Threshold 4: Interfere substantially with the movement of any native resident or migratory fish or wildlife species or with established native resident or migratory wildlife corridors, or impede the use of wildlife nursery sites.

For the purpose of this discussion, a sensitive animal species was considered to potentially occur in the vicinity of the BSA if its known geographical distribution encompassed part of the area where proposed project or DOSL Alternative improvements would occur or if its distribution was near the project area and general habitat requirements of the species were present (e.g., the presence of roosting, nesting, or foraging habitat or a permanent water source). Focused surveys for rare, threatened, or endangered species were not conducted because there were no sensitive species identified that potentially occur within the BSA. No migratory wildlife corridors occur within the BSA.

Threshold 5: Conflict with any local policies or ordinances protecting biological resources, such as a tree preservation policy or ordinance.

Construction would require the removal of 35 landscape trees from the International Boulevard median in Oakland. Depending on the method of construction, additional trees may be removed including 20 in Oakland and four in San Leandro. Generally, these trees range from five to 27 inches in diameter and are
surrounded by road, sidewalks and buildings. They are not sensitive species or otherwise protected by local ordinance.

Threshold 6: Conflict with the provisions of an adopted Habitat Conservation Plan, Natural Community Conservation Plan, or other approved local, regional, or state habitat conservation plan.

There are no adopted Habitat Conservation Plans, Natural Community Conservation Plans, or other local approved plan that address biological resources occurring within the BSA.

CUMULATIVE IMPACTS

Cumulative impacts identified in Section 5.3 of the Final EIS/EIR were evaluated for the potential to add to impacts of the proposed East Bay BRT Project as described in Chapters 3 and 4 of the Final EIS/EIR. Most of the projects were determined not to contribute substantially to cumulative impacts in any environmental category when combined with the proposed East Bay BRT Project as defined in the Draft EIS/EIR, with the exception of two proposed projects – the East 14th Street North Area Study in San Leandro, and the bicycle lane project along Telegraph Avenue between Aileen Street/State Route 24 and 16th Street in Oakland. Revisions to the proposed project and DOSL Alternative that occurred after circulation of the Draft EIS/EIR have eliminated the potential for cumulative impacts. No cumulative biological resource impacts would occur as a result of the proposed project or DOSL.

DESIGN FEATURES

CONSTRUCTION

- Best Management Practices will be followed to avoid effects to surface water. In compliance with the Executive Order on Invasive Species, E.O. 13112, landscaping included in the proposed project or DOSL Alternative will not use species listed as noxious weeds.
- All potential nest tree removal activities shall be conducted during the nonbreeding season under the supervision of a qualified biologist, if feasible. The size of the nest buffer shall be determined by the biologist in consultation with CDF&G and will be based on the nesting species and its sensitivity to disturbance at the nest.
- Mature trees will not be removed.
- Best Management Practices will be followed to avoid effects to surface water. In compliance with the Executive Order on Invasive Species, E.O. 13112, landscaping included in the proposed project or DOSL Alternative will not use species listed as noxious weeds.
- All potential nest tree removal activities shall be conducted during the nonbreeding season under the supervision of a qualified biologist, if feasible. The size of the nest buffer shall be determined by the biologist in consultation with CDFG and will be based on the nesting species and its sensitivity to disturbance at the nest.

OPERATION

No measures would be required to reduce biological resource impacts during operation.

MITIGATION MEASURES

Implementation of the design standards referenced above would reduce potential biological resource impacts to less than significant levels; therefore, no mitigation measures are required.

RESIDUAL IMPACTS AFTER MITIGATION

No residual impacts would occur.
7.1.4 CULTURAL RESOURCES

THRESHOLDS OF SIGNIFICANCE

Thresholds used to evaluate potential impacts on cultural resources are based on applicable criteria in the State CEQA Guidelines (CCR §§15000-15387), Appendix G. A significant impact on cultural (historical and/or archaeological) resources would occur if the proposed project or DOSL Alternative would:

1) Cause a substantial adverse change in the significance of an archaeological resource as defined in §15064.5 of the State CEQA Guidelines and §106 of the National Historic Preservation Act (NHPA).

2) Cause a substantial adverse change in the significance of a historical resource as defined in §15064.5 of the State CEQA Guidelines and §106 of the National Historic Preservation Act (NHPA).

3) Directly or indirectly destroy a unique paleontological resource or site or unique geologic feature.

4) Disturb any human remains, including those interred outside of formal cemeteries.

IMPACT

Threshold 1: Little disturbance of existing pavement or undisturbed area would occur; therefore, the potential for impacts to archaeological resources would be low. However, implementation of the design features identified below would reduce potential impacts to cultural resources to less than significant.

Threshold 2: There are no direct effects on any of the historic properties within the proposed project or DOSL Alternative. Therefore, this issue is not addressed in these Findings.

Threshold 3: The corridor is not believed to contain paleontological resources nor would excavation disturb resources that may occur in the project area. Therefore, this issue is not addressed in these Findings.

Threshold 4: No cemetery or known burials would be affected by the proposed project or DOSL Alternative. Therefore, this issue is not addressed in these Findings.

FINDINGS

The analysis concluded that impacts would be less than significant for Thresholds 2, 3 and 4; therefore, no mitigation measures are required. The final State Historic Preservation Office letter of concurrence was received by AC Transit and is part of the Final EIS/EIR administrative record.

EXPLANATION

Threshold 2: Cause a substantial adverse change in the significance of a historical resource as defined in §15064.5 of the State CEQA Guidelines and §106 of the National Historic Preservation Act (NHPA).

Eight historic resources within the project APE were found to be listed in, determined eligible for, or appear to be eligible for the National Register of Historic Places, and are also considered to be historical resources for the purposes of CEQA. Neither the proposed project or DOSL Alternative proposes the physical destruction or alteration of any historic property; thus, there are no direct effects on any of the historic properties within the proposed project or DOSL Alternative.

Threshold 3: Directly or indirectly destroy a unique paleontological resource or site or unique geologic feature.

Paleontological resources are not specifically addressed in the FEIR/FEIS. The project corridor is within a highly developed urban environment with little open space in or adjacent to the proposed BRT alignment. The corridor is not believed to contain paleontological resources nor would excavation needed to
construct the proposed project or DOSL Alternative improvements be deep enough to disturb any resources that may occur in the project area.

Threshold 4: Disturb any human remains, including those interred outside of formal cemeteries.

Six archaeological sites have been recorded in or immediately adjacent to the project alignment in the Downtown Oakland area. These include a human burial and a large animal tooth; a sandy midden with some shell, a skull, and a mortar; a well, a sewer line, a privy, a pit feature, and two mortared brick foundations associated with a building erected in 1900 (evaluated and judged not eligible for the National Register); elements of the old urban railroad system; and an abandoned concrete masonry manhole. One additional site has been recorded since the 2005 study was completed, and is also located in the Downtown Oakland area. This site includes a human burial and a large mortar. All seven of the identified sites are included in the proposed project and DOSL Alternative study area. In the early 1880s two early Oakland cemeteries were reported to be located not far from the project area. None appear to be close enough to be affected by the proposed project or DOSL Alternative.

CUMULATIVE IMPACTS

Cumulative impacts identified in Section 5.3 of the Final EIS/EIR were evaluated for the potential to add to impacts of the proposed East Bay BRT Project as described in Chapters 3 and 4 of the Final EIS/EIR. Most of the projects were determined not to contribute substantially to cumulative impacts in any environmental category when combined with the proposed East Bay BRT Project as defined in the Draft EIS/EIR, with the exception of two proposed projects – the East 14th Street North Area Study in San Leandro, and the bicycle lane project along Telegraph Avenue between Aileen Street/State Route 24 and 16th Street in Oakland. Revisions to the proposed project and DOSL Alternative that occurred after circulation of the Draft EIS/EIR have eliminated the potential for cumulative impacts. No cumulative cultural resource impacts would occur as a result of the proposed project or DOSL.

DESIGN FEATURES

CONSTRUCTION

An archeologist will monitor construction work in sensitive locations identified in the Site Treatment Plan for the Alameda-Contra Costa Transit District’s East Bay Rapid Transit Project in Berkeley, Oakland, and San Leandro. If buried cultural materials are encountered during construction, work will stop and measures will be taken as specified in the plan. If applicable, AC Transit and FTA will comply with 36 CFR 800.10 with regard to late discoveries.

OPERATION

No measures would be required to reduce biological resource impacts during operation.

MITIGATION MEASURES

Implementation of the design features referenced above would reduce potential cultural resource impacts to less than significant levels; therefore, no mitigation measures in advance of construction are required. Because archaeological resources could be discovered when existing pavement and other surface areas are reconstructed to install BRT features, the following measures would be implemented as defined in Section 4.17.6 of the Final EIS/EIR:

- An archeologist will monitor any construction work within the project alignment in sensitive locations (identified in the Site Treatment Plan and second addendum archaeological survey report).
- If buried cultural materials (either prehistoric or historic) are encountered during construction, work would stop in that area until a qualified archaeologist can evaluate the nature and
significance of the find. Depending on the type of feature, the archaeologist may recommend archaeological excavation to either evaluate, record, or remove the feature.

- If human remains are encountered, construction work in the area would be halted and the Alameda County Coroner contacted. In addition, if the remains are Native American, the California Native American Heritage Commission (NAHC) would be immediately contacted. The NAHC would identify the most likely descendants who would be consulted on the disposition of Native American human remains and associated artifacts.
- Arrangements will be made with an authorized facility for permanent curation of any recovered artifactual materials.
- The archaeological monitor will inform construction crews, prior to construction work, of material types that might be encountered under the street. Prior to construction, contractors and workers will be informed of reporting requirements in the event that buried cultural materials or human remains were found, whether in monitored areas or not.
- If within State right-of-way there is a cultural resource or burial discovery during the course of either identification efforts or construction activities, the Caltrans Office of Cultural Resource Studies, District 4, shall be immediately contacted and all construction/activities within 50 feet of the find shall cease until it has been assessed by Caltrans Office of Cultural Resources Studies.
- A cultural resources monitoring report will be prepared that summarizes findings, if any, of monitoring activities. The report will be made available to the public, resources agencies, and other interested parties, including Caltrans District 4.

RESIDUAL IMPACTS AFTER MITIGATION

No residual impacts would occur.

7.1.5 HAZARDS AND HAZARDOUS MATERIALS

Thresholds used to evaluate potential hazards and hazardous materials are based on applicable criteria in the State CEQA Guidelines (CCR §§15000-15387), Appendix G. A significant hazardous materials impact would occur if the proposed project or DOSL Alternative would:

1) Create a significant hazard to the public or the environment through the routine transport, use or disposal of hazardous materials;
2) Create a significant hazard to the public or the environment through reasonably foreseeable upset and accident conditions involving the release of hazardous materials into the environment;
3) Emit hazardous emissions or handle hazardous or acutely hazardous materials, substances or waste within one-quarter mile of an existing or proposed school;
4) Be located on a site that is included on a list of hazardous materials sites compiled pursuant to Government Code Section 65962.5 and, as a result, created significant hazard to the public or the environment;
5) Result in a safety hazard for people residing or working in the project vicinity;
6) Impair implementation of or physically interfere with an adopted emergency response plan or emergency evacuation plan; and
7) Expose people or structures to a significant risk of loss, injury or death involving wildland fires.

IMPACT

Threshold 1: The proposed project or DOSL Alternative would not involve the transport of hazardous materials; thus, this issue is not addressed in these Findings.
Threshold 2: The proposed project or DOSL Alternative would not involve the use of hazardous materials that could be accidentally released in to the environment; thus, this issue is not addressed in these Findings.

Threshold 3: The proposed project or DOSL Alternative would not involve the use or transport of hazardous materials that could be emitted within one-quarter mile of a school. Thus, this issue is not addressed in these Findings.

Threshold 4: Implementation of design features discussion below would reduce potentially significant impacts associated with the presence of hazardous materials sites to less than significant.

Threshold 5: The transit vehicles would operate within existing roadway corridors; thus, it would not increase safety hazards for people living or working within proximity to the corridor. This issue is not addressed in these Findings.

Threshold 6: Transit vehicles would operate within existing roadway corridors; thus, the proposed project or DOSL Alternative would not impair or interfere with an adopted response plan or emergency evacuation plan. This issue is not addressed in these Findings.

Threshold 7: The transit vehicles would operate within existing roadway corridors in a heavily urbanized area. The proposed project or DOSL Alternative would not increase exposure to wildfires. This issue is not addressed in these Findings.

FINDINGS

The analysis concluded that impacts would be less than significant for Thresholds 1, 2, 3, 5, 6 and 7; therefore, no mitigation measures are required.

EXPLANATION

Threshold 1: Create a significant hazard to the public or the environment through the routine transport, use or disposal of hazardous materials.

The proposed project or DOSL Alternative is intended to facilitate transit service within the study corridor. It would not involve the transport of hazardous materials; thus, this issue is not addressed in these Findings.

Threshold 2: Create a significant hazard to the public or the environment through reasonably foreseeable upset and accident conditions involving the release of hazardous materials into the environment.

The proposed project or DOSL Alternative is intended to facilitate transit service within the study corridor. It would not involve the use of hazardous materials that could be accidentally released in to the environment; thus, this issue is not addressed in these Findings.

Threshold 3: Emit hazardous emissions or handle hazardous or acutely hazardous materials, substances or waste within one-quarter mile of an existing or proposed school.

The proposed project or DOSL Alternative is intended to facilitate transit service within the study corridor. It would not involve the use or transport of hazardous materials that could be emitted within one-quarter mile of a school. Thus, this issue is not addressed in these Findings.

Threshold 5: Result in a safety hazard for people residing or working in the project vicinity. The proposed project and DOSL Alternative is intended to facilitate transit service within the study corridor.

The transit vehicles would operate within existing roadway corridors; thus, it would not increase safety hazards for people living or working within proximity to the corridor. This issue is not addressed in these Findings.
Threshold 6: Impair implementation of or physically interfere with an adopted emergency response plan or emergency evacuation plan.

The proposed project or DOSL Alternative is intended to facilitate transit service within the study corridor. The transit vehicles would operate within existing roadway corridors; thus, the project would not impair or interfere with an adopted response plan or emergency evacuation plan. This issue is not addressed in these Findings.

Threshold 7: Expose people or structures to a significant risk of loss, injury or death involving wildland fires.

The proposed project or DOSL Alternative is intended to facilitate transit service within the study corridor. The transit vehicles would operate within existing roadway corridors in a heavily urbanized area. The proposed project or DOSL Alternative would not increase exposure to wildfires.

CUMULATIVE IMPACTS

Cumulative impacts identified in Section 5.3 of the Final EIS/EIR were evaluated for the potential to add to impacts of the proposed East Bay BRT Project as described in Chapters 3 and 4 of the Final EIS/EIR. Most of the projects were determined not to contribute substantially to cumulative impacts in any environmental category when combined with the proposed East Bay BRT Project as defined in the Draft EIS/EIR, with the exception of two proposed projects – the East 14th Street North Area Study in San Leandro, and the bicycle lane project along Telegraph Avenue between Aileen Street/State Route 24 and 16th Street in Oakland. Revisions to the proposed project and DOSL Alternative that occurred after circulation of the Draft EIS/EIR have eliminated the potential for cumulative impacts. No cumulative hazardous material impacts would occur as a result of the proposed project or DOSL.

DESIGN FEATURES

CONSTRUCTION

AC Transit will require the contractor to develop and implement a Worker Health and Safety Plan (WH&SP) to address the handling and storage of hazardous construction materials. A plan that effectively protects those in closest proximity to the source of contaminants would protect corridor residents and others. In addition, prior to construction, the following would be implemented:

- Preconstruction field surveys of identified environmental risk sites to observe current conditions.
- Regulatory file review of environmental risk sites to determine current status of sites and extent of contamination.
- Subsurface exploration of segments of the proposed project or DOSL Alternative alignment next to or down gradient from any environmental risk site. (If construction of the project warrants.)

OPERATION

No design features addressing hazardous conditions or materials would be required during operation.

MITIGATION MEASURES

Implementation of the design features referenced above would reduce potential hazardous materials impacts to less than significant levels; therefore, no mitigation measures are required.

RESIDUAL IMPACTS AFTER MITIGATION

No residual impacts would occur.
7.1.6 HYDROLOGY AND WATER QUALITY

Thresholds used to evaluate potential hydrology and water quality impacts are based on applicable criteria in the State CEQA Guidelines (CCR §§15000-15387), Appendix G. A significant hydrology or water quality impact would occur if the proposed project or DOSL Alternative would:

1) Violate any water quality standards or waste discharge requirements;
2) Substantially deplete groundwater supplies or interfere substantially with groundwater recharge such that there would be a net deficit in aquifer volume or a lowering of the local groundwater table level (e.g., the production rate of pre-existing nearby wells would drop to a level which would not support existing land uses or planned uses for which permits have been granted);
3) Substantially alter the existing drainage pattern of the site or area, including through the alteration of the course of a stream or river, in a manner which would result in substantial erosion or siltation on- or off-site;
4) Substantially alter the existing drainage pattern of the site or area, including through the alteration of the course of a stream or river, or substantially increase the rate or amount of surface runoff in a manner which would result in flooding on- or off-site;
5) Create or contribute runoff water which would exceed the capacity of existing or planned stormwater drainage systems or provide substantial additional sources of polluted runoff;
6) Otherwise substantially degrade water quality;
7) Place housing within a 100-year flood hazard area as mapped on a federal Flood Hazard Boundary or Flood Insurance Rate Map or other flood hazard delineation map;
8) Place within a 100-year flood hazard area structures, which would impede or redirect flood flows;
9) Expose people or structures to a significant risk of loss, injury or death involving flooding, including flooding as a result of the failure of a levee or dam; or
10) Inundation by seiche, tsunami, or mudflow.

IMPACTS

Threshold 1: The Build Alternatives would remove roadway pavement and excavate and grade along the transitway and in station areas. Exposure and loosening of soils and subsurface materials have potential to affect stormwater runoff into storm drains along the BRT alignment. Implementation of the design features would reduce potential impacts to less than significant.

Threshold 2: No groundwater would be withdrawn nor would recharge be affected. Thus, this issue is not addressed in these Findings.

Threshold 3: Drainage patterns may be temporarily altered during construction as surfaces would be disturbed to construct the improvements. Implementation of the design features would reduce potential impacts to less than significant.

Threshold 4: Drainage patterns may be temporarily altered during construction as surfaces would be disturbed to construct the improvements. Implementation of the design features would reduce potential impacts to less than significant.

Threshold 5: The overall amount of impervious surface would not change as a result of the proposed project or DOSL Alternative. Thus, this issue isn’t addressed in these Findings.

Threshold 6: Construction would disturb ground surface to install project improvements. This could increase the potential for erosion and related water quality impacts. Implementation of the design features would reduce potential impacts to less than significant.
Threshold 7: No housing would added into a 100-year floodplain as a result of the project. Thus, this issue isn’t addressed in these Findings.

Threshold 8: No new structures would be placed within a 100-year floodplain as a result of the proposed project or DOSL Alternative. Thus, this issue isn’t addressed in these Findings.

Threshold 9: The proposed project or DOSL Alternative would not expose people or structures to a significant risk of loss, injury or death involving flooding. Thus, this issue isn’t addressed in these Findings.

Threshold 10: Proposed project or DOSL Alternative features would not be exposed to inundation by seiche, tsunami, or mudflow. Thus, this issue isn’t addressed in these Findings.

FINDINGS

The analysis concluded that impacts would be less than significant for Thresholds 2, 5, 7, 8, 9, 10; therefore, no mitigation measures are required.

EXPLANATION

Thresholds 2: Substantially deplete groundwater supplies or interfere substantially with groundwater recharge such that there would be a net deficit in aquifer volume or a lowering of the local groundwater table level (e.g., the production rate of pre-existing nearby wells would drop to a level which would not support existing land uses or planned uses for which permits have been granted).

The maximum depth of excavation would be two to three feet; thus, no de-watering is anticipated. No water wells are proposed as part of the Project. Thus, groundwater recharge occurring within the study area would not be affected.

Threshold 5: Create or contribute runoff water which would exceed the capacity of existing or planned stormwater drainage systems or provide substantial additional sources of polluted runoff.

The proposed project or DOSL Alternative would not change the amount of impervious surfaces; thus, stormwater runoff would be less than under existing conditions. The proposed project or DOSL Alternative would not impact stormwater drainage infrastructure.

Threshold 7: Place housing within a 100-year flood hazard area as mapped on a federal Flood Hazard Boundary or Flood Insurance Rate Map or other flood hazard delineation map.

No housing is associated with the proposed project or DOSL Alternative; thus, no housing would be placed within a flood hazard area.

Threshold 8: Place within a 100-year flood hazard area structures, which would impede or redirect flood flows;

Implementation of the proposed project or DOSL Alternative would not involve the construction of housing or other structures in a 100-year flood hazard area.

Threshold 9: Expose people or structures to a significant risk of loss, injury or death involving flooding, including flooding as a result of the failure of a levee or dam; or

No levees or dams are located in proximity to the project corridor.

Threshold 10: Inundation by seiche, tsunami, or mudflow.

A tsunami is a rapidly moving wave or series of waves caused by earthquakes or undersea landslides. The proposed project or DOSL Alternative would not increase traffic, construct new structures or induce growth within an area subject to inundation by a tsunami. Given these considerations, the proposed project or DOSL Alternative would have no impact with respect to this threshold. Seiches are oscillating waves in enclosed or partially enclosed bodies of water (e.g., lakes, bays, or gulfs) for varying lengths of
time as a result of seismic or atmospheric disturbances. Lake Merritt is located in proximity to the proposed corridor; however, given the urbanized nature of the corridor and intervening land uses, the it would not pose a sieche risk to the project. Further, proposed project area is not located on or immediately adjacent to hillside areas that may present mudflow hazards. Implementation of the proposed project or DOSL Alternative would not expose users or the public to the risk of significant loss, injury, or death involving flooding, as a result of seiche or mudflow.

CUMULATIVE IMPACTS

Cumulative impacts identified in Section 5.3 of the Final EIS/EIR were evaluated for the potential to add to impacts of the proposed project as described in Chapters 3 and 4 of the Final EIS/EIR. Most of the projects were determined not to contribute substantially to cumulative impacts in any environmental category when combined with the proposed East Bay BRT Project as defined in the Draft EIS/EIR, with the exception of two proposed projects – the East 14th Street North Area Study in San Leandro, and the bicycle lane project along Telegraph Avenue between Aileen Street/State Route 24 and 16th Street in Oakland. Revisions to the proposed project and DOSL Alternative that occurred after circulation of the Draft EIS/EIR have eliminated the potential for cumulative impacts. No cumulative hydrology/water quality impacts would occur as a result of the proposed project or DOSL.

DESIGN FEATURES

CONSTRUCTION

AC Transit will require the contractor to develop and implement SWPPP. The plan will be prepared prior to beginning construction activities and detail the contractor’s plan for controlling runoff. The SWPPP will specify the major storage locations for excavated materials and for any delivered materials not immediately set in place. Water quality control measures for these sites will be described.

The SWPPP will outline control measures to be taken as well as BMPs implemented to control and prevent to the maximum extent practicable the discharge of pollutants to surface waters and groundwater. Treatment BMPs that will be implemented for the project will mainly consist of mechanical devices such as catch basin inserts or other in-line filtering devices during construction. In addition, the SWPPP will include a plan for responding to and managing accidental spills during construction and a plan for the management and disposal of pumped ponded water or groundwater. The SWPPP will address overall management of the construction project, such as designating areas for equipment fueling, concrete washout, and stockpiles.

In support of or in addition to the above, AC Transit will implement the following measures to address related impacts of drainage and runoff associated with construction:

- AC Transit will require the contractor to submit and implement an approved Erosion and Sediment Control Plan (ESCP). The plan will emphasize standard temporary erosion control measures to reduce sedimentation and turbidity of surface runoff from disturbed areas during each rainy season (October 1 to May 1).
- AC Transit will require the contractor to submit a Spill Prevention, Contaminant and Clean-up (SPCC) plan for fuels, oils, lubricants, and other hazardous materials that may be used during construction.

Further, if the construction disturbance area would be more than one acre, compliance with National Pollution Discharge Elimination System requirements would be required. A SWPPP would be prepared in accordance with the Construction General Permit (2009-0009-DWQ), which will include construction BMPs for stormwater/erosion control, and a Storm Water Management Plan (SWMP), which will include post-construction BMPs.

OPERATION
No measures would be required to reduce hydrology/water quality impacts during operation.

MITIGATION MEASURES

Implementation of the design features referenced above would reduce potential hydrology/water quality impacts to less than significant levels; therefore, no mitigation measures are required.

RESIDUAL IMPACTS AFTER MITIGATION

No residual impacts would occur.

7.1.7 NOISE AND VIBRATION

Thresholds used to evaluate potential hazards and hazardous materials are based on applicable criteria in the State CEQA Guidelines (CCR §§15000-15387), Appendix G. A significant noise impact would occur if the proposed project or DOSL Alternative would result in:

1) Exposure of persons to or generation of noise levels in excess of standards established in the local general plan or noise ordinance, or applicable standards of other agencies?

2) Exposure of persons to or generation of excessive groundborne vibration or groundborne noise levels?

3) A substantial permanent increase in ambient noise levels in the project vicinity above levels existing without the project?

4) A substantial temporary or periodic increase in ambient noise levels in the project vicinity above levels existing without the project?

5) For a project located within an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or public use airport, would the project expose people residing or working in the project area to excessive noise levels.

6) For a project within the vicinity of a private airstrip, would the project expose people residing or working in the project area to excessive noise levels?

IMPACT

Threshold 1: Operation of the proposed project or DOSL Alternative would not generate noise levels in excess of applicable standards. This issue is not addressed in these Findings.

Threshold 2: The proposed project or DOSL Alternative would not require pile driving or related construction techniques that could cause ground borne noise and/or vibration. This issue is not addressed in these Findings.

Threshold 3: The proposed project or DOSL Alternative would reduce noise levels within the corridor based on no build conditions. This issue is not addressed in these Findings.

Threshold 4: Operation of the proposed project or DOSL Alternative would not generate noise levels in excess of applicable standards. However, construction may temporarily increase noise levels at receptors located in proximity to construction areas. Implementation of the design features would reduce potential temporary impacts to less than significant.

Threshold 5: The proposed project or DOSL Alternative would not affect or be affected by operation of neighboring airports. This issue is not addressed in these Findings.

Threshold 6: There are no private airstrips in proximity to the proposed project or DOSL Alternative corridor. This issue is not addressed in these Findings.
FINDINGS

The analysis concluded that impacts would be less than significant for Thresholds 1, 2, 3, 5 and 6; therefore, no mitigation measures are required.

EXPLANATION

Threshold 1: Exposure of persons to or generation of noise levels in excess of standards established in the local general plan or noise ordinance, or applicable standards of other agencies.

Generally, the proposed project or DOSL Alternative would reduce noise levels along the alignment because future traffic volumes with the project are lower than future traffic volumes without the project. There are no Category 1, 2, or 3 impacts; thus, no significant impact would occur as a result of the proposed project or DOSL Alternative.

Threshold 2: Exposure of persons to or generation of excessive groundborne vibration or groundborne noise levels.

The proposed project or DOSL Alternative would not require pile driving or related construction techniques that could cause groundborne noise and/or vibration.

Threshold 3: A substantial permanent increase in ambient noise levels in the project vicinity above levels existing without the project.

As discussed above, the proposed project or DOSL Alternative would reduce noise levels along the alignment because future traffic volumes with the project are lower than future traffic volumes without the project. There are no Category 1, 2, or 3 impacts; therefore, no significant impact would occur.

The DOSL Alternative consists of the southern portion of the proposed project, truncated at the 20th Street station in Oakland. In other respects, the DOSL Alternative is identical to the proposed project. Because no impacts would occur as a result of the proposed project and because the DOSL Alternative does not include any features or improvements that would result in higher noise emissions than the proposed project, it is concluded that no impacts would occur as a result of the DOSL Alternative.

Threshold 5: For a project located within an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or public use airport, would the project expose people residing or working in the project area to excessive noise levels.

The proposed project or DOSL Alternative is not located with an airport land use plan or in proximity to an airport. The proposed project would not or be affected by operation of airports located in proximity to the corridor.

Threshold 6: For a project within the vicinity of a private airstrip, would the project expose people residing or working in the project area to excessive noise levels.

There are no private airstrips in proximity to the proposed project or DOSL Alternative corridor.

CUMULATIVE IMPACTS

Cumulative impacts identified in Section 5.3 of the Final EIS/EIR were evaluated for the potential to add to impacts of the proposed East Bay BRT Project as described in Chapters 3 and 4 of the Final EIS/EIR. Most of the projects were determined not to contribute substantially to cumulative impacts in any environmental category when combined with the proposed East Bay BRT Project as defined in the Draft EIS/EIR, with the exception of two proposed projects – the East 14th Street North Area Study in San Leandro, and the bicycle lane project along Telegraph Avenue between Aileen Street/State Route 24 and 16th Street in Oakland. Revisions to the proposed project or DOSL Alternative that occurred after
circulation of the Draft EIS/EIR have eliminated the potential for cumulative impacts. No cumulative noise impacts would occur as a result of the proposed project or DOSL Alternative.

DESIGN FEATURES

CONSTRUCTION

Noise impacts are anticipated at any residential location within 25 to 90 feet of construction activities, depending on the construction phase. Night time construction may be necessary. Vibration impacts will need to be mitigated if construction equipment operates in proximity to wood-framed buildings along the project alignment (proximity is defined by the vibration impact distances for construction equipment discussed in Section 4.13 of the FEIS/EIR). The following noise and vibration minimization measures are defined in Section 4.17.10 of the Final EIS/EIR.

Control measures, such as the following, would minimize noise and vibration disturbances at sensitive areas during construction:

1) Use newer equipment with improved noise muffling and ensure that all equipment items have the manufacturers’ recommended noise abatement measures, such as mufflers, engine covers, and engine vibration isolators intact and operational. Newer equipment would generally be quieter in operation than older equipment. All construction equipment should be inspected at periodic intervals to ensure proper maintenance and presence of noise control devices (e.g., mufflers, shrouding, etc.).

2) Perform all construction in a manner to minimize noise and vibration. Use construction methods or equipment that will provide the lowest level of noise and ground vibration impact.

3) During asphalt cutting, a temporary noise barrier should be placed between the cutting area and noise sensitive sites.

4) Conduct truck loading, unloading and hauling operations so that noise is kept to a minimum by carefully selecting routes to avoid going through residential neighborhoods to the greatest possible extent.

5) Construction lay-down or staging areas should be selected in industrially zoned districts. If industrially zoned areas are not available, commercially zoned areas may be used, or locations that are at least 90 feet from any noise sensitive land use such as residences, hotels, and motels. Ingress and egress to and from the staging areas should be on collector streets or greater (higher street designations are preferred).

6) Turn off idling equipment.

7) Minimize construction activities during evening, nighttime, weekend, and holiday periods. Permits may be required in some cities before construction can be performed in noise sensitive areas between 7:00 p.m. and 7:00 a.m.

8) The construction contractor should be required by contract specification to comply with all local noise ordinances and obtain all necessary permits and variances. It is expected that ground-borne vibration from construction activities would cause only intermittent localized intrusion along the East Bay BRT route.

Processes such as earth moving with bulldozers, and the use of vibratory compaction rollers can create annoying vibration. There are cases where it may be necessary to use this type of equipment in proximity to residential buildings. Procedures, such as the following, would be used to minimize the potential for annoyance or damage from construction vibration:

1) When possible, limit the use of construction equipment that creates high vibration levels, such as vibratory rollers and hammers, operating within 130 feet of residential structures. Require

2) Require vibration monitoring during vibration-intensive activities.
3) Restrict the hours of vibration-intensive equipment or activities such as vibratory rollers so that impacts to residents are minimal (e.g., weekdays during daytime hours only when as many residents as possible are away from home). A combination of techniques for equipment noise and vibration control as well as administrative measures would be selected to provide the most effective means for reducing construction noise and vibration effects. Although, these measures would reduce construction impacts, temporary increases in noise would likely occur at some locations.

OPERATION

No measures would be required to reduce noise and vibration impacts during operation.

MITIGATION MEASURES

Implementation of the design features referenced above would reduce potential noise impacts to less than significant levels; therefore, no mitigation measures are required.

RESIDUAL IMPACTS AFTER MITIGATION

No residual impacts would occur.

7.2 SIGNIFICANT OR POTENTIALLY SIGNIFICANT IMPACTS FOR WHICH MITIGATION IS OUTSIDE THE AGENCY’S RESPONSIBILITY OR JURISDICTION

7.2.1 UTILITIES

Thresholds used to evaluate impacts to public services are based on applicable criteria in the State CEQA Guidelines (CCR §§15000-15387), Appendix G. A significant utility impact would occur if the project would:

1) Exceed wastewater treatment requirements of the applicable Regional Water Quality Control Board;

2) Require or result in the construction of new water or wastewater treatment facilities or expansion of existing facilities, the construction of which could cause significant environmental effects;

3) Require or result in the construction of new storm water drainage facilities or expansion of existing facilities, the construction of which could cause significant environmental effects;

4) Have sufficient water supplies available to serve the project from existing entitlements and resources, or are new or expanded entitlements needed;

5) Result in a determination by the wastewater treatment provider, which serves or may serve the project, that it has adequate capacity to serve the project’s projected demand in addition to the provider’s existing commitments;

6) Be served by a landfill with sufficient permitted capacity to accommodate the project’s solid waste disposal needs; or

7) Comply with federal, state, and local statutes and regulations related to solid waste.

IMPACT

Threshold 1: The proposed project or DOSL Alternative would not generate wastewater; thus, this issue is not addressed in these Findings.

Threshold 2: The proposed project or DOSL Alternative would not generate wastewater; thus, no new treatment facilities would be needed. However, construction may require relocation of wastewater lines.
Implementation of the design features identified below would reduce potential impacts to below a level of significance.

Threshold 3: The proposed project or DOSL Alternative would not create stormwater runoff; thus, no new treatment facilities would be needed. However, construction may require relocation of stormwater infrastructure. Implementation of the design features identified below would reduce potential impacts to below a level of significance.

Threshold 4: The proposed project or DOSL Alternative would not create demand for potable water; thus, no new supplies would be needed. However, construction may require relocation of water supply infrastructure. Implementation of the design features identified below would reduce potential impacts to below a level of significance.

Threshold 5: The proposed project or DOSL Alternative would not generate wastewater; thus, this issue is not addressed in these Findings.

Threshold 6: With the exception of some construction debris, the proposed project or DOSL Alternative would not generate solid waste; thus, this issue is not addressed in these Findings.

Threshold 7: With the exception of some construction debris, the proposed project or DOSL Alternative would not generate solid waste; thus, this issue is not addressed in these Findings.

FINDINGS

The analysis concluded that impacts would be less than significant for Thresholds 1, 5, 6 and 7; therefore, no mitigation measures are required.

EXPLANATION

Threshold 1: Exceed wastewater treatment requirements of the applicable Regional Water Quality Control Board.

The proposed project or DOSL Alternative would not generate wastewater; thus, Regional Water Quality Control Board treatment requirements would not be exceeded.

Threshold 5: Result in a determination by the wastewater treatment provider, which serves or may serve the project, that it has adequate capacity to serve the project’s projected demand in addition to the provider’s existing commitments.

The proposed project or DOSL Alternative would not generate wastewater; thus, no additional treatment capacity would be necessary.

Threshold 6: Be served by a landfill with sufficient permitted capacity to accommodate the project’s solid waste disposal needs.

With the exception of some construction debris, the proposed project or DOSL Alternative would not generate solid waste. The debris would be recycled and/or disposed of in an approved landfill. Quantities are not expected to be significant enough to exceed landfill capacity.

Threshold 7: Comply with federal, state, and local statutes and regulations related to solid waste.

With the exception of some construction debris, the proposed project or DOSL Alternative would not generate solid waste. The debris would be recycled and/or disposed of in an approved landfill. Thus, the project would comply with federal, state, and local statutes and regulations related to solid waste.

CUMULATIVE IMPACTS

Cumulative impacts identified in Section 5.3 of the Final EIS/EIR were evaluated for the potential to add to impacts of the proposed East Bay BRT Project as described in Chapters 3 and 4 of the Final EIS/EIR. Most of the projects were determined not to contribute substantially to cumulative impacts in any
environmental category when combined with the proposed East Bay BRT Project as defined in the Draft EIS/EIR, with the exception of two proposed projects – the East 14th Street North Area Study in San Leandro, and the bicycle lane project along Telegraph Avenue between Aileen Street/State Route 24 and 16th Street in Oakland. Revisions to the proposed project and DOSL Alternative that occurred after circulation of the Draft EIS/EIR have eliminated the potential for cumulative impacts. No cumulative utility impacts would occur as a result of the proposed project or DOSL.

DESIGN FEATURES

CONSTRUCTION

AC Transit and its contractors will coordinate closely with utility providers to give advance notice of any required short-term interruptions of service to customers. Contingency plans will be developed in coordination with utility providers to address unanticipated encounters with buried utilities and/or unscheduled interruptions in service.

OPERATION

No measures would be required to reduce utility impacts during operation.

MITIGATION MEASURES

Implementation of the design features referenced above would reduce potential utility impacts to less than significant levels; therefore, no mitigation measures are required.

RESIDUAL IMPACTS AFTER MITIGATION

No residual impacts would occur.

7.3 SIGNIFICANT UNAVOIDABLE IMPACTS

7.3.1 TRAFFIC AND CIRCULATION

Thresholds used to evaluate impacts to traffic are based on applicable criteria in the State CEQA Guidelines (CCR §§15000-15387), Appendix G. A significant traffic impact would occur if the proposed project or DOSL Alternative would:

1) Conflict with an applicable plan, ordinance or policy establishing measures of effectiveness for the performance of the circulation system, taking into account all modes of transportation including mass transit and non-motorized travel and relevant components of the circulation system, including but not limited to intersections, streets, highways and freeways, pedestrian and bicycle paths, and mass transit.

2) Conflict with an applicable congestion management program, including, but not limited to level of service standards and travel demand measures, or other standards established by the county congestion management agency for designated roads or highways.

3) Result in a change in air traffic patterns, including either an increase in traffic levels or a change in location that results in substantial safety risks.

4) Substantially increase hazards due to a design feature (e.g., sharp curves or dangerous intersections) or incompatible uses (e.g., farm equipment).

5) Result in inadequate emergency access.

6) Conflict with adopted policies, plans, or programs regarding public transit, bicycle or pedestrian facilities, or otherwise decrease the performance or safety of such features.

IMPACT
Threshold 1: The proposed project or DOSL Alternative would not conflict with applicable plans, ordinances or policies establishing measures of effectiveness of all modes of transportation within the corridor. Changes to the physical pedestrian environment in the project corridor will occur with the implementation of the proposed project and DOSL Alternative. In some locations changes could alter circulation patterns and restrict movements compared to existing conditions or conditions anticipated under the No-Build Alternative. The restrictions would be minor and often result from clearer channeling of movements. In a number of locations along the proposed project and DOSL alignment, the project will implement improvements benefitting pedestrians.

In general, the proposed project and DOSL Alternative has the potential to improve the overall environment for bicycling in the corridor in several ways. Because buses and cyclists travel at approximately the same speed in mixed traffic, the two modes “leap frog” back and forth competing for road space. The East Bay BRT project would remove buses, in part or entirely from the mixed-flow lanes used by cyclists, and thereby eliminate or substantially reduce this potential conflict. The addition of dedicated BRT lanes would also slow auto traffic, benefitting bicyclists and pedestrians. The proposed addition or expansion of bicycle lanes to Telegraph Avenue, East 12th Street and International Boulevard is a significant improvement for cyclists, creating dedicated facilities for uninterrupted bicycle travel over long distances.

In addition, BRT stations would be designed to allow level boarding and easy loading of bicycles; all BRT vehicles would include bicycle racks. Street redesign to accommodate the BRT transitway and stations, including removing a lane of traffic in each direction along Telegraph Avenue and International Boulevard, would tend to slow traffic speeds and reduce the ability of motorists to pass, thereby increasing the predictability of motorists and improving the overall bicycle friendliness of the street.

Where Class II bike lanes are proposed to be added in conjunction with this project, striping for the bike lanes in a few select locations ends as the lane approaches signalized intersections with left- or right-turn pockets before picking up on the other side of the intersection. At these locations, bikes share the mixed traffic lane when proceeding through the intersection. The bike lane design through intersections proposed by the East Bay BRT project is a common treatment on many major streets with bike lanes.

Threshold 2: Traffic operations impacts resulting in operations below established local standards would occur at 34 of the 129 study intersections in either Year 2015 or Year 2035 with implementation of the proposed project or DOSL Alternative. All but one location in Year 2015 could be mitigated through physical and operational improvements to not exceed impact thresholds. In 2035, all but six locations could be mitigated.

For the DOSL Alternative, traffic operations impacts resulting in operations below established local standards would occur at 17 of the 129 study intersections in either Year 2015 or Year 2035. All locations in Year 2015 could be mitigated through physical and operational improvements to not exceed impact thresholds. In 2035, all but one location could be mitigated.

Both the proposed project or DOSL Alternative, in various locations, convert two traffic lanes to transit-only lanes, thereby reducing roadway capacity on the BRT alignment and diverting some vehicles to alternate routes, causing the intersection congestion issues discussed above. The inclination of drivers to avoid these congested intersections may cause turning movements at other intersections, diverting traffic onto local streets. Placement of dedicated transitways may also prohibit left-turns or certain through-movements, forcing U-turns or other turning movements into neighborhoods.

Mitigation for traffic impacts has been closely coordinated with the cities of Berkeley, Oakland, and San Leandro. Some intersections could not be fully mitigated. In year 2035, the 6 impacted intersections that will not be fully mitigated with implementation of the proposed project or DOSL Alternative are located in Berkeley (1 intersection) and Oakland (5 intersections).
With implementation of the DOSL Alternative, the impacted intersection that would not be fully mitigated is located in the City of Oakland. The cities, in coordination with AC Transit, have come to the conclusion that the level of improvements needed to fully mitigate these intersections for traffic impacts will result in greater impacts to other areas, such as right-of-way and relocation of business and residential structures.

Parking impacts were removed as a CEQA threshold of significance as a result of the January, 2010, amendments. However, parking impacts were considered in the Draft EIS/EIR which was circulated prior to the 2010 amendments. Parking impacts and methods to avoid, reduce or minimize impact are addressed in Section 3.4.6 and 3.4.7 of the Final EIS/EIR and summarized as follows:

There are approximately 3,430 curbside parking spaces along the proposed project alignment. Of the total, approximately 783, or 23 percent, will be removed to implement BRT and related project improvements, including Class II bike lane extensions and streetscape improvements for pedestrians. About 338 of the spaces displaced are currently metered spaces.

The DOSL Alternative, which begins at the Uptown Transit Center in downtown Oakland and terminates at San Leandro BART in the North San Leandro segment, has the same effect on parking as described for the proposed project in the following segments:

- Downtown Oakland;
- Eastlake/San Antonio;
- Fruitvale;
- Central East Oakland;
- Elmhurst; and
- North San Leandro.

The DOSL Alternative has no displacement effects on parking north of the Uptown Transit Center. A total of approximately 379 spaces (404 less than the proposed project) will be removed out of 2,194 available, or 17 percent. Approximately 98 metered spaces are included in the displaced total. The displaced metered spaces amount to 20 percent of the metered spaces along the DOSL Alternative alignment. Compared to the LPA, the shorter DOSL Alternative has substantially less displacement for all types of curb parking. Design features that would reduce parking impacts are provided in Section 3.4.7 of Final EIS/EIR and summarized below.

Threshold 3: Air traffic patterns would not be affected by the proposed project or DOSL Alternative. This issue is not addressed in the Findings.

Threshold 4: The proposed project or DOSL Alternative would be designed consistent with FTA and local standards; and thus, would not have an impact per this threshold. This issue is not addressed in these Findings.

Threshold 5: Emergency access would not be adversely affected by the proposed project or DOSL Alternative. This issue is not addressed in these Findings.

Threshold 6: The proposed project or DOSL Alternative would alter pedestrian environments along its alignment. Design features summarized below would reduce potential pedestrian impacts to less than significant.

FINDINGS

The analysis concluded that impacts would be less than significant for Thresholds 3, 4, and 5; therefore, no mitigation measures are required.
EXPLANATION

Threshold 3: Result in a change in air traffic patterns, including either an increase in traffic levels or a change in location that results in substantial safety risks.

The proposed project or DOSL Alternative would involve local surface transportation improvements. No changes to air traffic patterns would occur as a result of project implementation.

Threshold 4: Substantially increase hazards due to a design feature (e.g., sharp curves or dangerous intersections) or incompatible uses (e.g., farm equipment).

The proposed project or DOSL Alternative would maintain the existing alignment for each road segment and is intended to improve circulation within the study area. The proposed project or DOSL Alternative would not introduce any design features that would create any hazards to traffic.

Threshold 5: Result in inadequate emergency access.

Construction of the proposed project or DOSL Alternative is not expected to require road closures or otherwise affect emergency access through the affected intersections. As a standard practice; however, if road closures (complete or partial) were necessary, the police and fire departments would be notified of the construction schedule and any required detours would allow emergency vehicles to use alternate routes for emergency response.

Where certain traffic movements will be eliminated by the design and operation of the BRT project, such as at minor cross streets intersecting with the BRT arterial (crossing of the BRT lanes will be prohibited except at signalized intersections), emergency vehicles will be exempt from restrictions posed on regular traffic.

CUMULATIVE IMPACTS

Cumulative impacts identified in Section 5.3 of the Final EIS/EIR were evaluated for the potential to add to impacts of the proposed East Bay BRT Project as described in Chapters 3 and 4 of the Final EIS/EIR. Most of the projects were determined not to contribute substantially to cumulative impacts in any environmental category when combined with the proposed East Bay BRT Project as defined in the Draft EIS/EIR, with the exception of two proposed projects – the East 14th Street North Area Study in San Leandro, and the bicycle lane project along Telegraph Avenue between Aileen Street/State Route 24 and 16th Street in Oakland.

Traffic operations impacts resulting in operations below established local standards would occur at 34 of the 129 study intersections in either Year 2015 or Year 2035 with implementation of the proposed project. All but one location in Year 2015 could be mitigated through physical and operational improvements to not exceed impact thresholds. In 2035, all but six locations could be mitigated.

For the DOSL Alternative, traffic operations impacts resulting in operations below established local standards would occur at 17 of the 129 study intersections in either Year 2015 or Year 2035. All locations in Year 2015 could be mitigated through physical and operational improvements to not exceed impact thresholds. In 2035, all but one location could be mitigated.

Mitigation measures referenced below would reduce project-related impacts; however, significant unavoidable adverse impacts would remain under 2015 and 2035 conditions. Because project-specific impacts would remain after mitigation, the proposed project or DOSL Alternative would contribute to cumulative traffic impacts.
DESIGN FEATURES

CONSTRUCTION

One lane of vehicular traffic will be maintained in each direction during business hours. Pedestrian access (including wheelchair accessible ramps and temporary sidewalks) will be maintained during construction. Traffic detours will be designated. Bicycle traffic may have to be rerouted to parallel facilities during construction. AC Transit will establish traffic, pedestrian, and bicycle control plans for the construction period. These plans will be approved by local cities. A transportation management plan (TMP) will be developed to provide advance notice of information on construction activities and durations, detours, and access issues during each state of construction.

OPERATION

Pedestrian Environment

The proposed project and DOSL Alternative will not adversely impact existing or planned pedestrian facilities and pedestrian movements in the project corridor. In a number of locations the pedestrian environment will improve due to the amenities provided by the East Bay BRT Project at and near stations and the reduction in traffic. Lower traffic volumes along BRT arterials are expected to decrease potential auto-pedestrian conflicts. For example, reducing the number of traffic lanes, from two to one lane, in each direction along such arterials as Telegraph Avenue and International Boulevard benefits pedestrians by reducing the double threat of pedestrians having to cross two mixed-flow traffic lanes in each direction. Drivers’ views of the crosswalk will not be obstructed by an adjacent vehicle.

Physical features of the proposed project and DOSL Alternative, such as improved high-visibility pedestrian crossings, signs and median refuge islands along the corridor, will enhance the existing pedestrian environment. AC Transit will design the project, whenever practicable and within the overall funding available, to support the pedestrian-friendly objectives established specifically for this corridor by local cities.

Bicycling Environment

The proposed project and DOSL Alternative will construct a number of improvements that will benefit bicyclists, compared to the No-Build condition. Class II lanes are proposed to be constructed along with the transit improvements for almost the entire length of Telegraph Avenue from the SR 24 crossing to 20th Street/Thomas Berkeley Way in Downtown Oakland. They also will be provided on East 12th Street from 3rd Avenue through 14th Avenue, on 14th Avenue to International Boulevard, and along International Boulevard from 54th Avenue to 81st Avenue.

Additionally, existing bike lanes or sharrows will be preserved on Telegraph Avenue in Berkeley and Oakland and for a portion of East 14th Street in San Leandro. Elsewhere, sharrow class 2.5 or unstriped Class III bike routes are currently designated or are proposed, including along Bancroft Way and portions of Telegraph Avenue in Berkeley and along International Boulevard/East 14th Street from 81st Avenue in Oakland to Euclid Avenue in San Leandro. Outside of minor modifications within station areas, the only elimination or reduction in existing or proposed bike lane facilities associated with the project is the conversion of recently added class II bike lanes to a class III bike route from Broadmoor Boulevard to Euclid Avenue on East 14th Street in San Leandro. This is associated with the provision of a dedicated median-running transitway in this segment.

The reduction in traffic lanes along the BRT alignment where dedicated lanes are proposed will modify the bike-auto environment. Congestion may increase in portions of the corridor; however, traffic volume may decrease with a shift in vehicles to parallel routes or to other modes and many auto turning movements will be eliminated, combining to reduce the number of bike-auto conflicts. In addition, traffic
may move more slowly as a result of congestion which would reduce the disparity between auto and bicycle travel speeds; thus, improving safety. Also, where autos and bikes must share the traffic lanes, where practicable, lanes will be widened to provide additional room for the mixing of these two modes.

Proposed design features are described in detail within Section 3.3.3 of the Final EIS/EIR.

Parking

Parking measures are summarized below and addressed in detail in Section 3.4.7 of the Final EIS/EIR. The following are considered design features as implementation will require coordination between AC Transit and local agencies to identify the scope of any parking issue to be resolved, methods to resolve the issue, funding sources and schedule.

Replace all Metered Spaces Lost by Metering with Meters at an Equivalent Number of Other Non-restricted or Time-restricted Spaces. All metered parking displaced by BRT and other proposed project or DOSL Alternative improvements will be replaced on a one-for-one basis. In an area where metered spaces are removed, other non-metered spaces, preferably as nearby as practicable, will be metered. The practical aspects of this approach are that the spaces targeted for metering must meet city requirements for parking spaces to be considered suitable for metering and that proposed metering is efficient and enforceable, among other factors. With respect to efficiency, cities such as Oakland are moving more and more to "pay-and-display meters in busy areas, with one metering station covering eight or more parking spaces. Therefore, spaces to be metered must meet minimum locational and operational requirements.

In some locations, replacement metered spaces can be found elsewhere along the BRT alignment itself; alternatively, substitute spaces have been identified on cross-streets. The "replace all metered" element of the parking mitigation strategy accommodates city desires to not lose parking revenue from the reduction in the number of metered spaces along the BRT alignment. By replacing displaced metered parking one-for-one, AC Transit would not reduce parking revenue capacity.

Ensure Parking Supply is Not Reduced Such That Occupancies Will Consistently Exceed 85 Percent of Supply Due to Implementation of Build Alternatives. This second element of the parking mitigation strategy was developed considering the level of supply needed to accommodate the existing need efficiently. As noted above, parking usage achieves optimal efficiency when occupancy is between 85 and 95 percent. AC Transit has chosen to be conservative and mitigate so as not to exceed the lower end of the occupancy range, which attempts to ensure, on average, 15 percent of parking spaces will be unoccupied during regular business hours. This level of unoccupied spaces provides an optimal balance: supply enough vacant spaces so drivers do not have to circle around looking for parking yet avoid an excess supply that will not be used efficiently.

This can be accomplished by converting unmetered or unrestricted commercial spaces parking supply along the corridor or on the cross-streets into time-restricted or metered spaces. Under the current conditions, vehicles can be parked at these unmetered or unrestricted spaces for a long time thus reducing the availability for other drivers to utilize these spaces. With the conversion to metered or time restricted parking, the turnover at these spaces will increase thus increasing the availability of the supply.

Occupancy surveys of parking spaces adjacent to commercial properties were conducted on the cross-streets to determine the number of spaces that were available for conversion. Parking spaces adjacent to residential buildings on the cross-streets are not proposed to be converted to mitigate parking impacts. In a given area, therefore, mitigation would first include replacing all metered spaces and, second, expand supply of time restricted parking to avoid exceeding the 85 percent occupancy threshold. The maximum spaces mitigated would not exceed the total number of spaces displaced by BRT and related improvements, such as the extension of Class II bike lanes and construction of pedestrian bulbs and safety islands.
Ensure Parking Changes Due to Mitigations Do Not Adversely Affect Residential Neighborhoods, in Particular Residential Parking. By changing the types of parking in an area, through additional metering and/or time restrictions, there is the possibility for secondary impacts or spillover effects on nearby neighborhoods. The mitigation strategies attempt to avoid this by not proposing any changes in parking types or supply in residential neighborhoods. Parking spaces in residential neighborhoods will not be metered or time restricted to better serve nearby businesses or activity centers. Only spaces currently available for other uses—based on their location in front of non-residential uses—are considered for mitigation.

Coordinate with Cities to Monitor and Address Spillover Parking Issues. To further reduce, minimize or avoid adverse impacts to parking, AC Transit will coordinate with the Cities of Berkeley, Oakland and San Leandro to monitor locations where spillover parking into neighborhoods might occur as a result of proposed project implementation. Parking conditions under the proposed project and/or the DOSL Alternatives will be monitored and, as appropriate, AC Transit will assist cities in implementing neighborhood parking plans, such as permit parking, to control undesirable parking impacts in residential areas. Specific methods to design and implement a parking monitoring program would be defined by AC Transit and affected cities after operation of the proposed project begins.

Traffic

To address potential traffic increases on local streets resulting from proposed project implementation, AC Transit commits to fund a neighborhood traffic management program. This program may include monitoring and the development of criteria for valuating neighborhood management actions such as installation of traffic calming devices. AC Transit commits to fund the planning (including addressing secondary impacts), design, and installation of devices to either reduce traffic volumes or reduce traffic speeds on local streets should they be adversely affected by the BRT project. The affected cities and AC Transit will establish criteria for determining when a local street is considered to be affected and when action is warranted.

The neighborhood traffic management program will include data collection prior to construction, followed by post construction data collection and planning and be completed within one year after opening the BRT system. Design and implementation of the selected measures will then occur over the next six months. In addition, AC Transit will contribute to a second fund to address miscellaneous neighborhood traffic management issues that may arise over the next 10 years. This second fund will be used for design and installation only and is intended for use only if the cities, through their neighborhood programs, identify additional traffic management needs that can be attributed to the BRT system.

MITIGATION MEASURES

YEAR 2015 INTERSECTION IMPACTS WITH PROPOSED PROJECT: CITY OF BERKELEY

The following mitigation measures partially or fully mitigate the significant vehicular traffic impacts at the identified intersections in one or more peak hour. The intersection numbers are referenced in Section 3.2 of the Final EIS/EIR:

Aloetraz Avenue & College Avenue (afternoon peak hour impact only) Proposed Mitigation:
Restripe eastbound approach to add an exclusive right-turn lane. Add a new northbound left-turn lane. Coordinate signal with Claremont Avenue & College Avenue and optimize cycle length, timing splits and timing offset.

Resulting LOS: Implementation of the proposed mitigation improves operations from LOS F to LOS C and the project impact is reduced to less than significant.

Secondary Impacts: Loss of approximately three parking spaces along College Avenue and loss of approximately two parking spaces along Alcatraz Avenue.
Alcatraz Avenue & Adeline Street (both peak hours impacted)

Proposed Mitigation: Coordinate signal with Ashby Avenue & Adeline Street and Ashby Avenue & Shattuck Avenue and optimize signal cycle length, timing splits and timing offset. This requires modifying phasing at Ashby Avenue & Adeline Street and upgrading signal controller at Ashby Avenue & Shattuck Avenue. Optimize signal timing splits and offset. Restripe westbound approach to add an exclusive left-turn lane. Prohibit eastbound left-turns. Prohibit pedestrian crossing of Adeline Street on the south side of the intersection. Extend the northbound and southbound left-turn pockets.

Resulting LOS: Implementation of the proposed mitigation improves operations from LOS E to LOS D in morning peak hour and from LOS F to LOS E in the afternoon peak hour. This reflects a lower level of delay in both peak hours than with the No-Build Alternative and the project impact is reduced to less than significant.

Secondary Impacts: Loss of approximately three parking spaces along Alcatraz Avenue and 440 linear feet of landscape median. Existing eastbound left-turns will be forced to shift to other intersections. No secondary intersection impact is forecast to result. Potential for increase in pedestrian walk distances due to elimination of pedestrian crossing, affecting 20 pedestrians in morning peak-hour and 24 pedestrians in afternoon peak-hour.

YEAR 2015 INTERSECTION IMPACTS: CITY OF OAKLAND

The following mitigations will partially or fully mitigate the significant vehicular traffic impact at the identified intersections in one or more peak hour:

Telegraph Avenue & Alcatraz Avenue (both peak hours impacted)

Proposed Mitigation: Restripe northbound approach to convert existing exclusive left-turn lane to a shared left-turn/through lane. Provide a second northbound receiving lane that extends approximately 150 feet north of the intersection. Optimize signal cycle length, timing splits and timing offset and modify intersection phasing. Remove southbound u-turn. Restripe eastbound and westbound approaches to add exclusive right-turn lanes.

Resulting LOS: Implementation of the proposed mitigation measure improves operations from LOS E to LOS D in morning peak hour and from LOS F to LOS E in the afternoon peak hour. While the proposed improvement would reduce the project impact to less than significant for the morning peak hour, in the afternoon peak hour the increase in delay from the No-Build Alternative exceeds significance thresholds. To fully mitigate the project impact, several additional improvements would be required. These improvements include a new exclusive southbound right-turn lane, a second exclusive southbound left-turn lane, a new exclusive northbound right-turn lane, and an eastbound right-turn overlap phase. These improvements require the acquisition of right-of-way and the elimination of some bike facilities. Therefore, these mitigations are considered infeasible. A significant impact would remain at the intersection; no feasible mitigation strategies are available to reduce the impact to less than significant for the afternoon peak hour.

Secondary Impacts: Loss of approximately two parking spaces along Telegraph Avenue and loss of approximately five parking spaces on Alcatraz Avenue. Existing southbound u-turns will be forced to shift to other intersections. No secondary intersection impact is forecast to result. Northbound bike lane converted to sharrow (i.e., shared lane between motor vehicles and bicyclists) on Telegraph Avenue between Alcatraz Avenue and 66th Street. Southbound bike lane converted to sharrow on Telegraph Avenue between 65th Street and 66th Street near the BRT station.
Telegraph Avenue & 56th Street (afternoon peak hour impact only)

Proposed Mitigation: Add an exclusive northbound right-turn lane. Optimize signal cycle length, timing splits and timing offset.

Resulting LOS: Implementation of the proposed mitigation measure improves operations from LOS F to LOS C and the project impact is reduced to less than significant.

Secondary Impacts: Loss of approximately five parking spaces along Telegraph Avenue.

Telegraph Avenue & 55th Street (both peak hours impacted)

Proposed Mitigation: Re-stripe eastbound approach to add an exclusive left-turn lane. Optimize signal cycle length, timing splits and timing offset.

Resulting LOS: Implementation of the proposed mitigation measure improves operations from LOS F to LOS D in the morning peak hour and from LOS E to LOS D in the afternoon peak hour. Thus, with mitigation, the project impact is reduced to less than significant.

Secondary Impacts: Loss of approximately four parking spaces along 55th Street.

Martin Luther King Jr. Way & 55th Street (afternoon peak hour impact only)

Proposed Mitigation: Add new exclusive right-turn lanes on both eastbound and westbound approaches.

Resulting LOS: Implementation of the proposed mitigation measure improves operations from LOS E to LOS C and the project impact is reduced to less than significant.

Secondary Impacts: None.

Martin Luther King Jr. Way & 52nd Street (afternoon peak hour impact only)

Proposed Mitigation: Optimize signal timing splits.

Resulting LOS: Implementation of the proposed mitigation measure improves operations from LOS E to LOS D and the project impact is reduced to less than significant.

Secondary Impacts: None.

Shattuck Avenue & 52nd Street (morning peak hour impact only)

Proposed Mitigation: Optimize signal cycle length, timing splits and timing offset.

Resulting LOS: Implementation of the proposed mitigation measure improves operations from LOS E to LOS D and the project impact is reduced to less than significant.

Secondary Impacts: None.

Telegraph Avenue & 51st Street (both peak hours impacted)

Proposed Mitigation: Add Telegraph Avenue & 55th Street and Shattuck Avenue & 52nd Street to the coordination zone. Optimize signal cycle length, timing splits and timing offset. Construct an additional southbound left-turn lane. Eliminate the left-turn lane on the northbound approach and redirect this movement via Shattuck Avenue & 52nd Street. Restripe northbound approach to replace the left turn lane with a through lane and provide a second northbound receiving lane that extends approximately 80 feet north of Telegraph Avenue & Claremont Avenue.

Resulting LOS: Implementation of the proposed mitigation measure improves operations from LOS E to LOS D in the morning peak hour and from LOS F to LOS D in the afternoon peak hour. Thus, with mitigation, the project impact is reduced to less than significant.
Secondary Impacts: Loss of approximately 11 parking spaces on Telegraph Avenue. Sidewalk on west side of Telegraph Avenue between 51st Street and 52nd Street reduced from 11 feet to 10 feet. Traffic island at southeast corner of Telegraph Avenue & Claremont Avenue reduced in width by six feet. Bike lanes on Telegraph Avenue converted to sharrows. Northbound left-turn movements will be diverted to Shattuck Avenue & 52nd Street, but will not cause a secondary intersection impact.

Telegraph Avenue & West MacArthur Boulevard (afternoon peak hour impact only)

Proposed Mitigation: Restripe westbound approach to convert existing shared through/right-turn lane to an exclusive right-turn lane. Optimize signal cycle length, timing splits and timing offset.

Resulting LOS: Implementation of the proposed mitigation measure improves operations from LOS E to LOS D and the project impact is reduced to less than significant.

Secondary Impacts: None.

East 12th Street (southbound) & 14th Avenue (afternoon peak hour impact only)

Proposed Mitigation: Coordinate signals at East 12th Street southbound (SB) & 14th Avenue, East 12th Street northbound (NB) & 14th Avenue, and International Boulevard & 14th Avenue with East 12th Street and International Boulevard through Eastlake. Optimize signal cycle length, timing splits, and timing offsets.

Resulting LOS: Implementation of the proposed mitigation measure improves operations from LOS E to LOS C and the project impact is reduced to less than significant.

Secondary Impacts: None.

International Boulevard & 29th Avenue (morning peak hour impact only)

Proposed Mitigation: Coordinate signals on International Boulevard between 15th Street and 29th Street and optimize signal cycle length, timing splits, and timing offsets.

Resulting LOS: Implementation of the proposed mitigation measure improves operations from LOS F to LOS D and the project impact is reduced to less than significant.

Secondary Impacts: None.

International Boulevard between Fruitvale Avenue and 38th Avenue

Impacts to intersections in the Fruitvale area and along International Boulevard between Fruitvale and 38th Avenue will be mitigated in part with the provision of additional capacity on parallel arterials. These improvements serve to enhance San Leandro Street as an alternative to International Boulevard and to improve traffic flow in the Fruitvale area.

Proposed Mitigation: Additional turn pockets will be provided at a number of intersections along the portion of San Leandro Street between Fruitvale Avenue and 50th Avenue. In addition, turn pockets will be added at the intersection of East 12th Street and 29th Avenue. The intersections of East 10th Street/San Leandro Street with Fruitvale Avenue and Derby Avenue with East 12th Street will be re-constructed to provide additional capacity. East 10th Street and San Leandro Street will be realigned at Fruitvale Avenue to provide a through connection at the intersection. Signals will be installed at the closely spaced intersections of Derby Avenue and northbound and southbound East 12th Street. East 10th Street and Derby Avenue (west of East 12th Street) will be re-striped to improve vehicular flow. Signals on San Leandro Street from 37th Street to 50th Street will be coordinated.

Resulting LOS: See the subsequent intersection-by-intersection discussion.
Secondary Impacts: This set of improvements modifies roadway geometrics at a number locations and results in changes to local travel patterns. Accordingly, it results in a number of secondary impacts, listed below:

- Right-of-way acquisition, totaling 6,090 square feet, along Derby Avenue, west of East 12th Street; 10th Street, north of Fruitvale Avenue; and San Leandro Street, between Fruitvale Avenue and 33rd Avenue.
- Modification of the pedestrian facility along the east side of San Leandro Street approaching High Street from a ten foot wide unpaved pathway to a five foot wide paved sidewalk with curb.
- Reduction in the sidewalk on the west side of San Leandro Street between Fruitvale Avenue and 33rd Avenue from twelve feet to eight feet.
- Planned East 12th Street Bikeway converted from a bike lane to sharrow for approximately 245 feet on southbound East 12th Street approaching Derby Avenue.
- The loss of a number of parking spaces throughout the improvement area, listed below:
 - East 12th Street & 29th Avenue: Loss of two spaces along East 12th Street and six spaces along 29th Avenue;
 - 13th Street & Derby Avenue: Loss of one space along Derby Avenue;
 - Northbound East 12th Street & Derby Avenue: Loss of 14 spaces along East 12th Street and three spaces along Derby Avenue;
 - Southbound East 12th Street & Derby Avenue: Loss of seven spaces along East 12th Street and two spaces along Derby Avenue;
 - East 10th Street & Derby Avenue: Loss of seven spaces along East 10th Street
 - East 10th Street & Fruitvale Avenue: Loss of 12 spaces along East 10th Street
 - Northbound East 12th Street & Fruitvale Avenue: Loss of two spaces along East 12th Street;
 - International Boulevard & Fruitvale Avenue: Loss of two spaces along Fruitvale Avenue;
 - San Leandro Street & Fruitvale Avenue: Loss of 13 spaces on San Leandro Street;
 - San Leandro Street & 35th Avenue: Loss of four spaces along San Leandro Street;
 - San Leandro Street & 37th Avenue: Loss of three spaces along San Leandro Street;
 - San Leandro Street & 39th Avenue: Loss of three spaces along San Leandro Street;
 - San Leandro Street & High Street: Loss of five spaces along San Leandro Street;
 - San Leandro Street & 45th Avenue: Loss of four spaces along San Leandro Street;
 - San Leandro Street & 47th Avenue: Loss of six spaces along San Leandro Street; and
 - San Leandro Street & 50th Avenue: Loss of four spaces along San Leandro Street and loss of three spaces along 50th Avenue.

East 12th Street & Fruitvale Avenue (both peak hours impacted)

Proposed Mitigation: In addition to the improvements identified above for San Leandro Street, East 12th Street, and East 10th Street, restripe the eastbound approach to convert an existing through/left-turn lane to a second left-turn only lane. Restripe the northbound approach to convert an existing exclusive right-turn lane to a shared through/right-turn lane. Optimize signal cycle length, timing splits and timing offsets for all signals in the signal coordination zone.

Resulting LOS: Implementation of the proposed mitigation measure improves operations from LOS E to LOS C in the morning peak hour and from LOS E to LOS D in the afternoon peak hour. Thus, with mitigation, the project impact is reduced to less than significant.
Secondary Impacts: None.

International Boulevard & 38th Street (afternoon peak hour impact only)

Proposed Mitigation: In addition to the improvements identified above for San Leandro Street, East 12th Street, and East 10th Street, coordinate signals on International Boulevard between 31st and 46th Street and optimize signal cycle length, timing splits and offsets for all signals in the signal coordination zone.

Resulting LOS: Implementation of the proposed mitigation measure improves operations from LOS E to LOS C and the **project impact is reduced to less than significant.**

Secondary Impacts: None.

International Boulevard & 42nd Street (both peak hours impacted)

Proposed Mitigation: Maintain two northbound and two southbound through lanes on International Boulevard between 41st Avenue and 44th Avenue. As mitigation on this segment, the southbound BRT would operate in mixed flow. Optimize signal cycle length, timing splits and timing offsets for all signals in the signal coordination zone.

Resulting LOS: Implementation of the proposed mitigation measure improves operations from LOS E to LOS D in the morning peak hour and from LOS E to LOS C in the afternoon peak hour. Thus, with mitigation, the **project impact is reduced to less than significant.**

Secondary Impacts: Loss of approximately six parking spaces along International Boulevard between 41st Avenue and High Street and removal of the unsignalized crosswalk at 41st Avenue.

International Boulevard & Havenscourt Boulevard (afternoon peak hour impact only)

Proposed Mitigation: Maintain two northbound and two southbound through lanes on International Boulevard between 65th Avenue and 67th Avenue. As mitigation, between 65th Avenue and 67th Avenue, the southbound BRT would operate in mixed flow. Between 66th Avenue and 67th Avenue, the northbound BRT would operate in mixed flow. Provide enhanced pedestrian crossings and intersection controls at International Boulevard and 65th Avenue and International Boulevard and 67th Avenue where buses transition to and from dedicated lanes. At the intersection of International Boulevard & Havenscourt Boulevard, provide protected left-turn phasing on all approaches. Remove northbound and southbound u-turns and prohibit right turns on red. Coordinate and optimize International Boulevard cycle lengths between 66th Street and 78th Street.

Resulting LOS: Implementation of the proposed mitigation measure improves operations from LOS F to LOS C and the **project impact is reduced to less than significant.**

Secondary Impacts: Loss of approximately five parking spaces along International Boulevard. BRT median platform relocated from 66th Avenue to 65th Avenue.

International Boulevard & Hegenberger Expressway (afternoon peak hour impact only)

Proposed Mitigation: Maintain two northbound and southbound through lanes on International Boulevard between 72nd Avenue and 74th Avenue. Restripe the westbound approach to add an exclusive right-turn lane. Optimize signal timing splits and timing offsets for all signals on International Boulevard between 66th Avenue and 78th Avenue.

Resulting LOS: Implementation of the proposed mitigation measure improves operations from LOS F to LOS D and the **project impact is reduced to less than significant.**

Secondary Impacts: Loss of approximately 12 parking spaces along International Boulevard. Slight reduction in the width of the sidewalk on the far side corner of northbound International Boulevard at
72nd Avenue; BRT median platform shifted north from 72nd Avenue to between 71st Avenue and 72nd Avenue; removal of the unsignalized crosswalk across International Boulevard at 75th Avenue.

International Boulevard & 98th Avenue (both peak hours impacted)

Proposed Mitigation: Maintain two northbound through lanes on International Boulevard from 99th Avenue to 97th Avenue and construct an additional southbound left-turn lane on International Boulevard at 98th Avenue. Optimize signal cycle length, timing splits and timing offset.

Resulting LOS: Implementation of the proposed mitigation measure improves operations from LOS E to LOS D in the morning peak hour and from LOS F to LOS D in the afternoon peak hour. Thus, with mitigation, the *project impact is reduced to less than significant.*

Secondary Impacts: Loss of approximately 12 parking spaces along International Boulevard. BRT median platform relocated from 98th Avenue to 99th Avenue. Crosswalk at 97th Avenue removed and 200 linear feet of landscaped median loss on International Boulevard.

YEAR 2015 INTERSECTION IMPACTS WITH DOSL ALTERNATIVE

The DOSL Alternative does not result in significant vehicular impacts at intersections north of downtown Oakland. Therefore, the mitigation measures identified at those intersections as associated with the proposed project would not be required. The required mitigation measures from downtown Oakland to San Leandro are identical as those identified under the proposed project. To further clarify, the following mitigation measures are proposed with the DOSL Alternative to partially or fully mitigate significant vehicular impacts at 8 locations:

- **East 12th Street (SB) & 14th Avenue:** Coordinate signals at East 12th Street (SB) & 14th Avenue, East 12th Street (NB) & 14th Avenue, and International Boulevard & 14th Avenue with East 12th Street and International Boulevard through Eastlake. Optimize signal cycle length, timing splits, and timing offsets.

- **International Boulevard & 29th Avenue:** Coordinate signals on International Boulevard between 15th Street and 29th Street and optimize signal cycle length, timing splits, and timing offsets.

- **Impacts to intersections in the Fruitvale area and along International Boulevard between Fruitvale and 38th Avenue:** will be mitigated in part with the provision of additional capacity on parallel arterials. These improvements serve to enhance San Leandro Street as an alternative to International Boulevard and to improve traffic flow in the Fruitvale area. Additional turn pockets will be provided at a number of intersections along the portion of San Leandro Street between Fruitvale Avenue and 50th Avenue. In addition, turn pockets will be added at the intersection of East 12th Street and 29th Avenue. The intersections of East 10th Street/San Leandro Street with Fruitvale Avenue and Derby Avenue with East 12th Street will be re-constructed to provide additional capacity. East 10th Street and San Leandro Street will be realigned at Fruitvale Avenue to provide a through connection at the intersection. Signals will be installed at the closely spaced intersections of Derby Avenue and northbound and southbound East 12th Street. East 10th Street and Derby Avenue (west of East 12th Street) will be re-striped to improve vehicular flow. Signals on San Leandro Street from 37th Street to 50th Street will be coordinated.

- **East 12th Street & Fruitvale Avenue:** In addition to the improvements identified above for San Leandro Street, East 12th Street, and East 10th Street, restripe the eastbound approach to convert an existing through/turn lane to a second left-turn only lane. Restripe the northbound approach to convert an existing exclusive left-turn lane to a through lane. Optimize signal cycle length, timing splits and timing offsets for all signals in the signal coordination zone.

- **International Boulevard & 38th Street:** In addition to the improvements identified above for San Leandro Street, East 12th Street, and East 10th Street, coordinate signals on International Boulevard.
Boulevard between 31st and 46th Street and optimize signal cycle length, timing splits and offsets for all signals in the signal coordination zone.

- International Boulevard & 42nd Street: Maintain two northbound and two southbound through lanes on International Boulevard between 41st Avenue and 44th Avenue. As mitigation on this segment, the southbound BRT would be required to operate in mixed flow. Optimize signal cycle length, timing splits and timing offsets for all signals in the signal coordination zone.

- International Boulevard & Havenscourt Boulevard: Maintain two northbound and two southbound through lanes on International Boulevard between 65th Avenue and 67th Avenue. As mitigation, between 65th Avenue and 67th Avenue, the southbound BRT would operate in mixed flow. Between 66th Avenue and 67th Avenue, the northbound BRT would operate in mixed flow. Provide enhanced pedestrian crossings and intersection controls at International Boulevard and 65th Avenue and International Boulevard and 67th Avenue where buses transition to and from dedicated lanes. At the intersection of International Boulevard & Havenscourt Boulevard, provide protected left turn phasing on all approaches to the intersection. Remove northbound and southbound u-turns and prohibit right turns on red. Coordinate and optimize International Boulevard cycle lengths between 66th Street and 78th Street.

- International Boulevard & Hegenberger Expressway: Maintain two northbound and southbound through lanes on International Boulevard between 72nd Avenue and 74th Avenue. Restripe the westbound approach to add an exclusive right turn lane. Optimize signal timing splits and timing offsets for all signals on International Boulevard between 66th Avenue and 78th Avenue.

- International Boulevard & 98th Avenue: Maintain two northbound through lanes on International Boulevard from 99th Avenue to 97th Avenue and construct an additional southbound left-turn lane on International Boulevard at 98th Avenue. Optimize signal cycle length, timing splits and timing offset.

YEAR 2035 INTERSECTION IMPACTS WITH PROPOSED PROJECT: CITY OF BERKELEY

The following mitigations will partially or fully mitigate the significant vehicular traffic impacts at the identified intersections in one or more peak hour:

Derby Street & Waring Street (both peak hours impacted)

Proposed Mitigation: Construct new exclusive right-turn lane with yield control on westbound approach

Resulting LOS: Implementation of the proposed mitigation measure improves operations from LOS F to LOS B in the morning peak hour and from LOS F to LOS D in the afternoon peak hour. Thus, with mitigation, the *project impact is reduced to less than significant*.

Secondary Impacts: Loss of approximately five parking spaces along Derby Street.

Ashby Avenue & Shattuck Avenue (morning peak hour impact only)

Proposed Mitigation: Coordinate signal with Ashby Avenue & Adeline Street and Alcatraz Avenue & Adeline Street and optimize signal cycle length, timing and splits. Requires upgrading the signal to actuated-coordinated.

Resulting LOS: Implementation of the proposed mitigation measure improves operations from LOS F to LOS D and the *project impact is reduced to less than significant*.

Secondary Impacts: None.
Ashby Avenue & College Avenue (afternoon peak hour impact only)

Proposed Mitigation: Optimize signal timing splits.

Resulting LOS: With implementation of the proposed mitigation measure, the intersection continues to operate at LOS E, but the increase in delay compared to the No-Build Alternative does not meet significance thresholds, and the project impact is reduced to less than significant.

Secondary Impacts: None.

Ashby Avenue & Claremont Avenue (afternoon peak hour impact only)

Proposed Mitigation: Optimize signal cycle length, timing splits and timing offset.

Resulting LOS: Implementation of the proposed mitigation measure reduces delay but does not improve level of service. In order to fully mitigate the project impact, a number of additional improvements would be required. New eastbound and westbound exclusive left-turn and right-turn lanes and modified signal phasing to accommodate protected left-turns and right-turn overlaps would be required. A significant impact remains at the intersection; no feasible mitigation strategies are available to reduce the impact to less than significant for the afternoon peak hour.

Secondary Impacts: None.

Alcatraz Avenue & College Avenue (both peak hours impacted)

Proposed Mitigation: Restripe eastbound approach to add an exclusive right-turn lane. Add a new northbound left-turn lane. Coordinate signal with Claremont Avenue & College Avenue and optimize cycle length, timing splits and timing offset. This mitigation is also proposed to address 2015 intersection impacts.

Resulting LOS: Implementation of the proposed mitigation measure improves operations from LOS F to LOS D in both peak hours and the project impact is reduced to less than significant.

Secondary Impacts: Loss of approximately three parking spaces along College Avenue and loss of approximately two parking spaces along Alcatraz Avenue.

Alcatraz Avenue & Adeline Street (both peak hours impacted)

Proposed Mitigation: Coordinate signal with Ashby Avenue & Adeline Street and Ashby Avenue & Shattuck Avenue and optimize signal cycle length, timing splits and timing offset. Requires modifying phasing at Ashby Avenue/Adeline Street and upgrading the signal at Ashby Avenue/Shattuck Avenue. Optimize signal timing splits and offsets. Restripe westbound approach to add an exclusive left-turn lane. Prohibit eastbound left-turns. Prohibit pedestrian crossing of Adeline Street on the south side of the intersection. Extend the northbound and southbound left-turn pockets. This mitigation is also proposed to address 2015 intersection impacts.

Resulting LOS: With implementation of the proposed mitigation measure, the intersection continues to operate at LOS F in both peak hours, but with less delay as in the No-Build Alternative, and the project impact is reduced to less than significant.

Secondary Impacts: Loss of approximately three parking spaces along Alcatraz Avenue and 440 linear feet of landscape median. Existing eastbound left-turns will be forced to shift to other intersections. No secondary intersection impact is forecast to result from this shift. Potential for increase in pedestrian walk distances due to elimination of pedestrian crossing, affecting 20 pedestrians in morning peak-hour and 24 pedestrians in afternoon peak-hour.
YEAR 2035 INTERSECTION IMPACTS: CITY OF OAKLAND

The following mitigations will partially or fully mitigate the significant vehicular traffic impact at the identified intersections in one or more peak hour:

Telegraph Avenue & Alcatraz Avenue (both peak hours impacted)

Proposed Mitigation: Restripe northbound approach to convert existing exclusive left-turn lane to a shared left-turn/through lane. Provide a second northbound receiving lane that extends approximately 150 feet north of the intersection. Optimize signal cycle length, timing splits and timing offset and modify intersection phasing. Remove southbound u-turn. Restripe eastbound and westbound approaches to add exclusive right-turn lanes. This mitigation is also proposed to address 2015 intersection impacts.

Resulting LOS: Implementation of the proposed mitigation measure improves operations from LOS F to LOS E in the morning peak hour and, while reducing delay, does not improve level of service in the afternoon peak hour. In order to fully mitigate the project impact, several additional improvements would be required. These improvements include a new exclusive southbound right-turn lane, a second exclusive southbound left-turn lane, a new exclusive northbound right-turn lane, and an eastbound right-turn overlap phase. These improvements require the acquisition of right-of-way and the elimination of some bike facilities. Therefore, these mitigations are considered infeasible. A significant impact remains at the intersection; no feasible mitigation strategies are available to reduce the impact to less than significant for either peak hour.

Secondary Impacts: Loss of approximately two parking spaces along Telegraph Avenue and loss of approximately five parking spaces along Alcatraz Avenue. Existing southbound u-turns will be forced to shift to other intersections. No secondary intersection impact is forecast to result. Northbound bike lane converted to sharrow on Telegraph Avenue between Alcatraz Avenue and 66th Street. Southbound bike lane converted to sharrow on Telegraph Avenue between 65th Street and 66th Street near the BRT station.

Claremont Avenue & 62nd Street (afternoon peak hour impact only)

Proposed Mitigation: Construct exclusive eastbound and westbound left-turn lanes on Claremont Avenue. Re-stripe southbound approach on College Avenue to add an exclusive right-turn lane. Coordinate signal with Alcatraz Avenue & College Avenue and optimize signal cycle length, timing splits and timing offset.

Resulting LOS: The proposed mitigation measure improves operations from LOS F to LOS D and the project impact is reduced to less than significant.

Secondary Impacts: Loss of 15 spaces along 62nd Street.

Telegraph Avenue & 56th Street (afternoon peak hour impact only)

Proposed Mitigation: Add an exclusive northbound right-turn lane. Optimize signal cycle length, timing splits and timing offset. This mitigation is also proposed to address 2015 intersection impacts.

Resulting LOS: Implementation of the proposed mitigation measure improves operations from LOS F to LOS C and the project impact is reduced to less than significant.

Secondary Impacts: Loss of approximately five parking spaces on Telegraph Avenue.

Telegraph Avenue & 55th Street (both peak hours impacted)

Proposed Mitigation: Re-stripe eastbound approach to add an exclusive left-turn lane. Optimize signal cycle length, timing splits and timing offset. This mitigation is also proposed to address 2015 intersection impacts.
Resulting LOS: Implementation of the proposed mitigation measure improves operations from LOS F to LOS E in the morning peak hour and, while reducing delay, does not improve level of service in the afternoon peak hour. In order to fully mitigate the project impact in both peak hours, an exclusive southbound right-turn lane would need to be constructed. This improvement requires the acquisition of right-of-way, and is therefore considered infeasible. A significant impact remains at the intersection; no feasible mitigation strategies are available to reduce the impact to less than significant for either peak hour.

Secondary Impacts: Loss of approximately four parking spaces along 55th Street.

Martin Luther King Jr. Way & 55th Street (both peak hours impacted)

Proposed Mitigation: Add new exclusive right-turn lanes on both eastbound and westbound approaches. This mitigation is also proposed to address 2015 intersection impacts.

Resulting LOS: Implementation of the proposed mitigation measure improves operations from LOS E to LOS D in the morning peak hour and from LOS F to LOS D in the afternoon peak hour. Thus, with mitigation, the project impact is reduced to less than significant.

Secondary Impacts: None.

Martin Luther King Jr. Way & 52nd Street (afternoon peak hour impact only)

Proposed Mitigation: Optimize signal timing splits. This mitigation is also proposed to address 2015 intersection impacts.

Resulting LOS: With implementation of the proposed mitigation measure, the intersection continues to operate at LOS E, but with less delay as in the No-Build Alternative, and the project impact is reduced to less than significant.

Secondary Impacts: None.

Telegraph Avenue & 51st Street (both peak hours impacted)

Proposed Mitigation: Add Telegraph Avenue & 55th Street and Shattuck Avenue & 52nd Street to the coordination zone. Optimize signal cycle length, timing splits and timing offset. Construct an additional southbound left-turn lane. Eliminate the left-turn lane on the northbound approach and redirect this movement via Shattuck Avenue & 52nd Street. Restripe northbound approach to replace the left-turn lane with a through lane and provide a second northbound receiving lane that extends approximately 80 feet north of Telegraph Avenue & Claremont Avenue. This mitigation is also proposed to address 2015 intersection impacts.

Resulting LOS: Implementation of the proposed mitigation measure improves operations from LOS F to LOS E in the morning peak hour and with less delay than in the No-Build Alternative. In the afternoon peak hour, the proposed mitigation measure improves operations from LOS F to LOS D. Thus, with mitigation, the project impact is reduced to less than significant.

Secondary Impacts: Loss of approximately 11 parking spaces on Telegraph Avenue. Sidewalk on west side of Telegraph Avenue between 51st Street and 52nd Street reduced from 11 feet to 10 feet. Traffic island at southeast corner of Telegraph Avenue & Claremont Avenue reduced in width by six feet. Bike lanes on Telegraph Avenue converted to sharrows. Northbound left-turn movements will be diverted to Shattuck Avenue & 52nd Street, but will not cause a secondary intersection impact.

Telegraph Avenue & 40th Street (afternoon peak hour impact only)

Proposed Mitigation: Re-stripe eastbound approach to add an exclusive right-turn lane. Optimize signal timing splits and timing offset.
Resulting LOS: Implementation of the proposed mitigation measure improves operations from LOS F to LOS E in the afternoon peak hour, but does not mitigate the impact to a less than significant level. In order to fully mitigate the intersection impact, exclusive northbound and southbound right-turn lanes would need to be constructed and northbound and southbound u-turns would need to be prohibited. This requires the acquisition of right-of-way, and is therefore considered infeasible. Therefore, **a significant impact remains at the intersection;** no feasible mitigation strategies are available to reduce the impact to less than significant for the afternoon peak hour.

Secondary Impacts: Loss of approximately five parking spaces along 40th Street. Curb bulbout on eastbound 40th Street would not be constructed. Convert eastbound bike lane on 40th Street approaching Telegraph Avenue to a sharrow.

Telegraph Avenue & West MacArthur Boulevard (afternoon peak hour impact only)

Proposed Mitigation: Restripe westbound approach to convert existing shared through/right-turn lane to an exclusive right-turn lane. Optimize signal cycle length, timing splits and timing offset. This mitigation is also proposed to address 2015 intersection impacts.

Resulting LOS: Implementation of the proposed mitigation measure improves operations from LOS F to LOS E in the afternoon peak hour, but does not mitigate the impact to a less than significant level. In order to fully mitigate the intersection impact, a number of improvements would be required. These would include construction of exclusive right-turn lanes on the northbound, southbound and eastbound approaches, construction of exclusive left-turn lanes on the eastbound and westbound approaches, and construction of a second left-turn lane on the southbound approach. These improvements all require the acquisition of right-of-way, and are therefore considered infeasible. **A significant impact remains at the intersection;** no feasible mitigation strategies are available to reduce the impact to less than significant for the afternoon peak hour.

Secondary Impacts: None.

Telegraph Avenue & 27th Street (both peak hours impacted)

Proposed Mitigation: Add exclusive right-turn lanes on the eastbound, westbound, and southbound approaches. Optimize signal timing splits and timing offset.

Resulting LOS: Implementation of the proposed mitigation measure improves operations from LOS E to LOS D in the morning peak hour and from LOS F to LOS C in the afternoon peak hour. Thus, with mitigation, the **project impact is reduced to less than significant.**

Secondary Impacts: Loss of approximately six parking spaces along 27th Street. The bike lane would be converted to a bike sharrow on the eastbound, westbound and southbound approaches.

East 12th Street & 5th Avenue (morning peak hour impact only)

Proposed Mitigation: Optimize signal cycle length, timing splits, and timing offsets and coordinate signals along East 12th Street.

Resulting LOS: Implementation of the proposed mitigation measure reduces delay but does not improve level of service. In order to fully mitigate the project impact at this intersection a number of additional improvements would be required. These would include the prohibition of all u-turns at the intersection, the restriction of southbound left-turns at 5th Avenue, and the addition of a second northbound through lane on East 12th Street from 14th Avenue to 2nd Avenue. **A significant impact remains at the intersection;** no feasible mitigation strategies are available to reduce the impact to less than significant for the morning peak hour.

Secondary Impacts: None.
East 12th Street (SB) & 14th Avenue (afternoon peak hour impact only)

Proposed Mitigation: Coordinate signals at East 12th Street (SB) & 14th Avenue, East 12th Street (NB) & 14th Avenue, and International Boulevard & 14th Avenue with East 12th Street and International Boulevard through Eastlake. Optimize signal cycle length, timing splits, and timing offsets. This mitigation is also proposed to address 2015 intersection impacts.

Resulting LOS: Implementation of the proposed mitigation measure improves operations from LOS E to LOS C and the project impact is reduced to less than significant.

Secondary Impacts: None.

International Boulevard & 14th Avenue (afternoon peak hour impact only)

Proposed Mitigation: Coordinate signals at East 12th Street (SB) & 14th Avenue, East 12th Street (NB) & 14th Avenue, and International Boulevard & 14th Avenue and International Boulevard & 14th Avenue with East 12th Street and International Boulevard through Eastlake. Optimize signal cycle length, timing splits, and timing offsets.

Resulting LOS: Implementation of the proposed mitigation measure improves operations from LOS F to LOS C and the project impact is reduced to less than significant.

Secondary Impacts: None.

International Boulevard & 29th Avenue (morning peak hour impact only)

Proposed Mitigation: Coordinate signals on International Boulevard between 15th Street and 29th Street and optimize signal cycle length, timing splits, and timing offsets. This mitigation is also proposed to address 2015 intersection impacts.

Resulting LOS: Implementation of the proposed mitigation measure improves operations from LOS F to LOS D and the project impact is reduced to less than significant.

Secondary Impacts: None.

International Boulevard between Fruitvale Avenue and 38th Avenue

Impacts to intersections in the Fruitvale area and along International Boulevard between Fruitvale and 38th Avenue will be mitigated in part with the provision of additional capacity on parallel arterials. These improvements serve to enhance San Leandro Street as an alternative to International Boulevard and to improve traffic flow in the Fruitvale area.

Proposed Mitigation: Additional turn pockets will be provided at a number of intersections along the portion of San Leandro Street between Fruitvale Avenue and 50th Avenue. In addition, turn pockets will be added at the intersection of East 12th Street and 29th Avenue. The intersections of East 10th Street/San Leandro Street with Fruitvale Avenue and Derby Avenue with East 12th Street will be reconstructed to provide additional capacity. East 10th Street and San Leandro Street will be realigned at Fruitvale Avenue to provide a through connection at the intersection. Signals will be installed at the closely spaced intersections of Derby Avenue and northbound and southbound East 12th Street. East 10th Street and Derby Avenue (west of East 12th Street) will be re-striped to improve vehicular flow. Signals on San Leandro Street from 37th Street to 50th Street will be coordinated. This mitigation is also proposed to address 2015 intersection impacts.

Resulting LOS: See the subsequent intersection-by-intersection discussion.

Secondary Impacts: This set of improvements is associated with a number of different intersections and results in a shift in traffic from International Boulevard to parallel routes. Therefore, there are a number of secondary impacts, listed below:
- A significant impact to level of service at the International Boulevard and Fruitvale Avenue intersection (morning peak hour impact only). This secondary impact is reduced to less than significant with the construction of an exclusive eastbound right turn pocket on Fruitvale Boulevard, coordination of signals on International Boulevard between 31st Street and 46th Street and optimization of signal cycle length, timing splits and timing offsets for all signals in the signal coordination zone.

- Right-of-way acquisition, totaling 6,090 square feet, along Derby Avenue, west of East 12th Street; 10th Street, north of Fruitvale Avenue; and San Leandro Street, between Fruitvale Avenue and 33rd Avenue.

- Modification of the pedestrian facility along the east side of San Leandro Street approaching High Street from a ten foot wide unpaved pathway to a five foot wide paved sidewalk with curb.

- Reduction in the sidewalk on the west side of San Leandro Street between Fruitvale Avenue and 33rd Avenue from twelve feet to eight feet.

- Planned East 12th Street Bikeway converted from a bike lane to sharrow for approximately 245 feet on southbound East 12th Street approaching Derby Avenue.

- The loss of a number of parking spaces throughout the improvement area, listed below:
 - East 12th Street & 29th Avenue: Loss of two spaces along East 12th Street and six spaces along 29th Avenue;
 - 13th Street & Derby Avenue: Loss of one space along Derby Avenue;
 - Northbound East 12th Street & Derby Avenue: Loss of 14 spaces along East 12th Street and three spaces along Derby Avenue;
 - Southbound East 12th Street & Derby Avenue: Loss of seven spaces along East 12th Street and two spaces along Derby Avenue;
 - East 10th Street & Derby Avenue: Loss of seven spaces along East 10th Street
 - East 10th Street & Fruitvale Avenue: Loss of 12 spaces along East 10th Street
 - Northbound East 12th Street & Fruitvale Avenue: Loss of two spaces along East 12th Street;
 - International Boulevard & Fruitvale Avenue: Loss of two spaces along Fruitvale Avenue;
 - San Leandro Street & Fruitvale Avenue: Loss of 13 spaces on San Leandro Street;
 - San Leandro Street & 35th Avenue: Loss of four spaces along San Leandro Street;
 - San Leandro Street & 37th Avenue: Loss of three spaces along San Leandro Street;
 - San Leandro Street & 39th Avenue: Loss of three spaces along San Leandro Street;
 - San Leandro Street & High Street: Loss of five spaces along San Leandro Street;
 - San Leandro Street & 45th Avenue: Loss of four spaces along San Leandro Street;
 - San Leandro Street & 47th Avenue: Loss of six spaces along San Leandro Street; and
 - San Leandro Street & 50th Avenue: Loss of four spaces along San Leandro Street and loss of three spaces along 50th Avenue.

East 12th Street & Fruitvale Avenue (both peak hours impacted)

Proposed Mitigation: In addition to the improvements identified above for San Leandro Street, East 12th Street, and East 10th Street, restripe the eastbound approach to convert an existing through/left-turn lane to a second left-turn only lane. Restripe the northbound approach to convert an existing exclusive right-turn lane to a shared through/right-turn lane. Optimize signal cycle length, timing
splits and timing offsets for all signals in the signal coordination zone. This mitigation is also proposed to address 2015 intersection impacts.

Resulting LOS: With implementation of the proposed mitigation measure operations improve from LOS F to LOS C in the morning peak hour. Operations improve from LOS F to LOS E in the afternoon peak hour and the increase in delay from the No-Build Alternative is less than significant. Thus, with mitigation, the *project impact is reduced to less than significant.*

Secondary Impacts: None.

Foothill Boulevard & Fruitvale Avenue (morning peak hour impact only)

Proposed Mitigation: Optimize signal timing splits and timing offsets for coordination with the intersection of International Boulevard and Fruitvale Avenue.

Resulting LOS: Implementation of the proposed mitigation measure improves operations from LOS F to LOS E and with less delay than in the No-Build Alternative. Thus, with mitigation, the *project impact is reduced to less than significant.*

Secondary Impacts: None.

International Boulevard & 35th Street (afternoon peak hour impact only)

Proposed Mitigation: In addition to the improvements identified above for San Leandro Street, East 12th Street, and East 10th Street, coordinate signals on International Boulevard between 31st Street and 46th Street and optimize signal cycle length, timing splits and timing offsets for all signals in the signal coordination zone.

Resulting LOS: Implementation of the proposed mitigation measure improves operations from LOS E to LOS D and the *project impact is reduced to less than significant.*

Secondary Impacts: None.

International Boulevard & 38th Street (afternoon peak hour impact only)

Proposed Mitigation: In addition to the improvements identified above for San Leandro Street, East 12th Street, and East 10th Street, coordinate signals on International Boulevard between 31st Street and 46th Street and optimize signal cycle length, timing splits and timing offsets for all signals in the signal coordination zone. This mitigation is also proposed to address 2015 intersection impacts.

Resulting LOS: Implementation of the proposed mitigation measure improves operations from LOS F to LOS C and the *project impact is reduced to less than significant.*

Secondary Impacts: None.

International Boulevard & 42nd Avenue (morning peak hour impact only)

Proposed Mitigation: Maintain two northbound and two southbound through lanes on International Boulevard between 41st Avenue and 44th Avenue. Over this segment, the southbound BRT would operate in mixed flow. Optimize signal cycle length, timing splits and timing offsets for all signals in the signal coordination zone. This mitigation is also proposed to address 2015 intersection impacts.

Resulting LOS: Implementation of the proposed mitigation measure improves operations from LOS E to LOS D and the *project impact is reduced to less than significant.*

Secondary Impacts: Loss of approximately six parking spaces along International Boulevard between 41st Avenue and High Street and removal of the unsignalized crosswalk at 41st Avenue.

International Boulevard & High Street (afternoon peak hour impact only)
Proposed Mitigation: Maintain two northbound and two southbound through lanes on International Boulevard between 41st Avenue and 44th Avenue. As mitigation on this segment, the southbound BRT would operate in mixed flow. Optimize signal cycle length, timing splits and timing offsets for all signals in the signal coordination zone.

Resulting LOS: Implementation of the proposed mitigation measure improves operations from LOS F to LOS C and the project impact is reduced to less than significant.

Secondary Impacts: Loss of approximately eight parking spaces on International Boulevard between High Street and 45th Avenue and 360 linear foot reduction in landscaped median. Crosswalk at 44th Avenue relocated 85 feet to the south. BRT median platform relocated from High Street to between 44th and 45th Avenues.

International Boulevard & Havenscourt Boulevard (afternoon peak hour impact only)

Proposed Mitigation: Maintain two northbound and two southbound through lanes on International Boulevard between 65th Avenue and 67th Avenue. As mitigation, between 65th Avenue and 67th Avenue, the southbound BRT would operate in mixed flow. Between 66th Avenue and 67th Avenue, the northbound BRT would operate in mixed flow. Provide enhanced pedestrian crossings and intersection controls at International Boulevard and 65th Avenue and International Boulevard and 67th Avenue where buses transition to and from dedicated lanes. At the intersection of International Boulevard & Havenscourt Boulevard, provide protected left-turn phasing on all approaches. Remove northbound and southbound u-turns and prohibit right turns on red. Coordinate and optimize International Boulevard cycle lengths between 66th Street and 78th Street. This mitigation is also proposed to address 2015 intersection impacts.

Resulting LOS: Implementation of the proposed mitigation measure improves operations from LOS E to LOS C and the project impact is reduced to less than significant.

Secondary Impacts: Loss of approximately five parking spaces along International Boulevard. BRT median platform relocated from 66th Avenue to 65th Avenue. Northwest and northeast curb bulbs at 65th Avenue would not be constructed.

International Boulevard & Hegenberger Expressway (both peak hours impacted)

Proposed Mitigation: Maintain two northbound and southbound through lanes on International Boulevard between 72nd Avenue and 74th Avenue. Restripe the westbound approach to add an exclusive right-turn lane. Optimize signal timing splits and timing offsets for all signals on International Boulevard between 66th Avenue and 78th Avenue. This mitigation is also proposed to address 2015 intersection impacts.

Resulting LOS: Implementation of the proposed mitigation measure improves operations from LOS E to LOS D in the morning peak hour and from LOS F to LOS D in the afternoon peak hour. Thus, with mitigation, the project impact is reduced to less than significant.

Secondary Impacts: Loss of approximately 12 parking spaces along International Boulevard. Slight reduction in the width of the sidewalk on the far side corner of northbound International Boulevard at 72nd Avenue; BRT median platform shifted north from 72nd Avenue to between 71st Avenue and 72nd Avenue; removal of the unsignalized crosswalk across International Boulevard at 75th Avenue.

San Leandro Boulevard & 98th Avenue (morning peak hour impact only)

Proposed Mitigation: Optimize signal timing splits and timing offset.

Resulting LOS: Implementation of the proposed mitigation measure improves operations from LOS F to LOS E and with less delay than in the No-Build Alternative. Thus, with mitigation, the project impact is reduced to less than significant.
Secondary Impacts: None.

International Boulevard & 98th Avenue (afternoon peak hour impact only)

Proposed Mitigation: Maintain two northbound through lanes on International Boulevard from 99th Avenue to 97th Avenue and construct an additional southbound left-turn lane on International Boulevard at 98th Avenue. Optimize signal cycle length, timing splits and timing offset. This mitigation is also proposed to address 2015 intersection impacts.

Resulting LOS: Implementation of the proposed mitigation measure improves operations from LOS F to LOS E and with less delay than in the No-Build Alternative. Thus, with mitigation, the project impact is reduced to less than significant.

Secondary Impacts: Loss of approximately 12 parking spaces along International Boulevard. BRT median platform relocated from 98th Avenue to 99th Avenue. Crosswalk at 97th Avenue removed and 200 linear feet of landscaped median loss on International Boulevard.

INTERSECTION IMPACTS: CITY OF SAN LEANDRO

The following mitigations would partially or fully mitigate the significant vehicular traffic impact at the identified intersections in one or more peak hour:

San Leandro Boulevard & West Broadmoor Boulevard (morning peak hour impact only)

Proposed Mitigation: Re-construct the westbound right-turn from West Broadmoor Boulevard as a channelized right-turn with an acceleration lane on San Leandro Boulevard.

Resulting LOS: Implementation of the proposed mitigation measure improves operations from LOS F to LOS D and the project impact is reduced to less than significant.

Secondary Impacts: Loss of 15 approximately parking spaces on San Leandro Boulevard.

Bancroft Avenue & Dutton Avenue (morning peak hour impact only)

Proposed Mitigation: Optimize signal timing splits and timing offset.

Resulting LOS: Implementation of the proposed mitigation measure improves operations from LOS E to LOS C and the project impact is reduced to less than significant.

Secondary Impacts: None.

Davis Street & San Leandro Boulevard (morning peak hour impact only)

Proposed Mitigation: Restripe the northbound approach to add an exclusive right turn lane. Optimize signal cycle length, timing splits and timing offset.

Resulting LOS: Implementation of the proposed mitigation measure improves operations from LOS F to LOS D and the project impact is reduced to less than significant.

Secondary Impacts: Loss of raised median along San Leandro Boulevard south of Davis Street for the length of the right-turn pocket.

YEAR 2035 INTERSECTION IMPACTS WITH DOSL ALTERNATIVE

The DOSL Alternative does not result in significant vehicular impacts at intersections north of downtown Oakland. Therefore, the mitigation measures identified at those intersections as associated with the proposed project would not be required. The required mitigation measures from downtown Oakland to San Leandro are identical as those identified under the proposed project. To further clarify, the following mitigation measures are proposed with the DOSL Alternative to partially or fully mitigate significant vehicular impacts at 18 locations:
• East 12th Street & 5th Avenue: Optimize signal cycle length, timing splits, and timing offsets and coordinate signals along East 12th Street.

• East 12th Street (SB) & 14th Avenue: Coordinate signals at East 12th Street (SB) & 14th Avenue, East 12th Street (NB) & 14th Avenue, and International Boulevard & 14th Avenue and International Boulevard & 14th Avenue with East 12th Street and International Boulevard through Eastlake. Optimize signal cycle length, timing splits, and timing offsets.

• International Boulevard & 14th Avenue: Coordinate signals at East 12th Street (SB) & 14th Avenue, East 12th Street (NB) & 14th Avenue, and International Boulevard & 14th Avenue and International Boulevard & 14th Avenue with East 12th Street and International Boulevard through Eastlake. Optimize signal cycle length, timing splits, and timing offsets.

• International Boulevard & 29th Avenue: Coordinate signals on International Boulevard between 15th Avenue and 29th Avenue and optimize signal cycle length, timing splits, and timing offsets.

• Impacts to intersections in the Fruitvale area and along International Boulevard between Fruitvale and 38th Avenue will be mitigated in part with the provision of additional capacity on parallel arterials. These improvements serve to enhance San Leandro Street as an alternative to International Boulevard and to improve traffic flow in the Fruitvale area. Additional turn pockets will be provided at a number of intersections along the portion of San Leandro Street between Fruitvale Avenue and 50th Avenue. In addition, turn pockets will be added at the intersection of East 12th Street and 29th Avenue. The intersections of East 10th Street/San Leandro Street with Fruitvale Avenue and Derby Avenue with East 12th Street will be re-constructed to provide additional capacity. East 10th Street and San Leandro Street will be realigned at Fruitvale Avenue to provide a through connection at the intersection. Signals will be installed at the closely spaced intersections of Derby Avenue and northbound and southbound East 12th Street. East 10th Street and Derby Avenue (west of East 12th Street) will be re-striped to improve vehicular flow. Signals on San Leandro Street from 37th Street to 50th Street will be coordinated.

• East 12th Street & Fruitvale Avenue: In addition to the improvements identified above for San Leandro Street, East 12th Street, and East 10th Street, restrripe the eastbound approach to convert an existing through/left-turn lane to a second left-turn only lane. Restripe the northbound approach to convert an existing exclusive left-turn lane to a through lane. Optimize signal cycle length, timing splits and timing offsets for all signals in the signal coordination zone.

• Foothill Boulevard & Fruitvale Avenue: Optimize signal timing splits and timing offsets for coordination with the intersection of International Boulevard and Fruitvale Avenue.

• International Boulevard & 35th Avenue: In addition to the improvements identified above for San Leandro Street, East 12th Street, and East 10th Street, coordinate signals on International Boulevard between 31st Avenue and 46th Avenue and optimize signal cycle length, timing splits and timing offsets for all signals in the signal coordination zone.

• International Boulevard & 38th Avenue: In addition to the improvements identified above for San Leandro Street, East 12th Street, and East 10th Street, coordinate signals on International Boulevard between 31st Avenue and 46th Avenue and optimize signal cycle length, timing splits and timing offsets for all signals in the signal coordination zone.

• International Boulevard & 42nd Avenue: Maintain two northbound and two southbound through lanes on International Boulevard between 41th Avenue and 44th Avenue. Over this segment, the southbound BRT would operate in mixed flow. Optimize signal cycle length, timing splits and timing offsets for all signals in the signal coordination zone.

• International Boulevard & High Street: Maintain two northbound and two southbound through lanes on International Boulevard between 41th Avenue and 44th Avenue. As mitigation on this
segment, the southbound BRT would operate in mixed flow. Optimize signal cycle length, timing splits and timing offsets for all signals in the signal coordination zone.

- **International Boulevard & Havenscourt Boulevard:** Maintain two northbound and two southbound through lanes on International Boulevard between 65th Avenue and 67th Avenue. As mitigation, between 65th Avenue and 67th Avenue, the southbound BRT would operate in mixed flow. Between 66th Avenue and 67th Avenue, the northbound BRT would operate in mixed flow. Provide enhanced pedestrian crossings and intersection controls at International Boulevard and 65th Avenue and International Boulevard and 67th Avenue where buses transition to and from dedicated lanes. At the intersection of International Boulevard & Havenscourt Boulevard, provide protected left-turn phasing on all approaches. Remove northbound and southbound u-turns and prohibit right turns on red. Coordinate and optimize International Boulevard cycle lengths between 66th Avenue and 78th Avenue.

- **International Boulevard & Hegenberger Expressway:** Maintain two northbound and southbound through lanes on International Boulevard between 72nd Avenue and 74th Avenue. Restripe the westbound approach to add an exclusive right-turn lane. Optimize signal timing splits and timing offsets for all signals on International Boulevard between 66th Avenue and 78th Avenue.

- **International Boulevard & 98th Avenue:** Maintain two northbound through lanes on International Boulevard from 99th Avenue to 97th Avenue and construct an additional southbound left-turn lane on International Boulevard at 98th Avenue. Optimize signal cycle length, timing splits and timing offset.

- **San Leandro Boulevard & West Broadmoor Boulevard:** Re-construct the westbound right-turn from West Broadmoor Boulevard as a channelized right turn with an acceleration lane.

- **San Leandro Street & 98th Avenue:** Optimize signal timing splits and timing offset.

- **Bancroft Avenue & Dutton Avenue:** Optimize signal timing splits and timing offset.

- **Davis Street & San Leandro Boulevard:** Restripe the northbound approach to add an exclusive right-turn lane. Optimize signal cycle length, timing splits and timing offset.

RESIDUAL IMPACTS AFTER MITIGATION

As set forth in the preceding sections of these Findings, the proposed project would result in the following significant and unavoidable impacts traffic and circulation impacts after mitigation.

2015 – **AFTERNOON PEAK**

The Telegraph Avenue/Alcatraz Avenue intersection in the City of Oakland would operate at LOS E with mitigation. This would be a significant and unavoidable adverse impact.

2035 – **MORNING PEAK**

The Telegraph Avenue/Alcatraz Avenue intersection in the City of Oakland would operate at LOS E with mitigation. This would be a significant and unavoidable adverse impact.

The Telegraph Avenue/55th Street intersection in the City of Oakland would operate at LOS E with mitigation. This would be a significant and unavoidable adverse impact.

The East 12th Street/5th Avenue intersection in the City of Oakland would operate at LOS F with mitigation for both the proposed project and DOSL Alternative. This would be a significant and unavoidable adverse impact.

2035 – **AFTERNOON PEAK**

The Telegraph Avenue/Alcatraz Avenue intersection in the City of Oakland would operate at LOS with mitigation. This would be a significant and unavoidable adverse impact.
The Telegraph Avenue/55th Street intersection in the City of Oakland would operate at LOS E with mitigation. This would be a significant and unavoidable adverse impact.

The Telegraph Avenue/40th Street intersection in the City of Oakland would operate at LOS E with mitigation. This would be a significant and unavoidable adverse impact.

The Telegraph Avenue/West MacArthur Boulevard intersection in the City of Oakland would operate at LOS E with mitigation. This would be a significant and unavoidable adverse impact.

The Ashby Avenue/Claremont Avenue intersection in the City of Berkeley would operate at LOS F with mitigation. This would be a significant and unavoidable adverse impact.
8 FINDINGS RELATED TO CUMULATIVE IMPACTS

The environmental document has evaluated cumulative effects of the East Bay BRT Project and other past, present, and reasonably foreseeable future projects in the study area. Because the proposed project will use existing paved street right-of-way, there is no potential for it to contribute to cumulative impacts on land use, neighborhood character or cohesion, or biological and wetlands resources in the general project corridor. Its primary impacts will be to travel demand, including mode choices, parking, and traffic circulation.

ASSESSMENT OF CUMULATIVE IMPACTS: REGIONAL CONTEXT

Because this document is based on accepted regional land use forecasts for 2035 and assumes transportation improvements programmed within the same time frame, effects evaluated under the proposed project and DOSL Alternative include the cumulative effects of development within the region. Thus, additional analysis of cumulative effects related to specific development and transportation improvement projects within the region is not necessary for impacts such as land use, transportation (including traffic and transit), air quality, and noise.

ASSESSMENT OF CUMULATIVE IMPACTS: LOCAL CONTEXT

Because the proposed project will use existing paved street right-of-way, there will be no potential for it to contribute to impacts to biological and wetlands resources in the general project corridor. Its primary impacts will be to traffic circulation and parking. Other major projects assumed in the 2035 No-Build Alternative and other related projects described in Section 1.3.1, Related Projects and Planning that might also contribute to these impacts are as follows:

- Telegraph Avenue Streetscape Improvements (proposed project; portion between 20th Street and 16th Street also affects DOSL Alternative)
- Telegraph Avenue Bike Lane project (proposed project; portion between 20th Street and 16th Street also affects DOSL Alternative)
- Oakland Bicycle Facility Improvements projects (proposed project and DOSL Alternative)
- 12th Street Reconstruction Project (proposed project and DOSL Alternative)
- Fruitvale Transit Village phase I, completed in 2004 (proposed project and DOSL Alternative)
- International Boulevard Streetscape Project in the City of Oakland (proposed project and DOSL Alternative)
- East 14th North Area Study (proposed project and DOSL Alternative)
- Caldecott Improvement Project (proposed project and DOSL Alternative)

Each of the projects identified above were evaluated for the potential to add to impacts of the proposed project or DOSL Alternative as described in Chapters 3 and 4. Most of the projects were determined not to contribute substantially to cumulative impacts in any environmental category when combined with the proposed East Bay BRT Project as defined in the Draft EIS/EIR, with the exception of two proposed projects – the East 14th Street North Area Study in San Leandro, and the bicycle lane project along Telegraph Avenue between Aileen Street/State Route 24 and 16th Street in Oakland. Through changes between the Draft EIS/EIR and the proposed project and DOSL Alternatives under consideration in this Final EIS/EIR, the potential for cumulative impacts associated with these two projects has been eliminated. Cumulative impacts have been addressed adequately in the impact chapters of this document, based on accepted regional land use forecasts for 2035. No additional cumulative impacts are anticipated to result from implementation of the proposed project or DOSL Alternative in conjunction with other proposed local projects as outlined in Section 5.3; therefore, no mitigation is required.
9 FINDINGS RELATED TO THE RELATIONSHIP BETWEEN SHORT- AND LONG-TERM USES OF THE ENVIRONMENT AND MAINTENANCE AND ENHANCEMENT OF LONG-TERM PRODUCTIVITY

Irreversible environmental changes will include the following:

- Implementation of the proposed project or DOSL Alternative will result in the consumption of non-renewable energy resources (i.e., fuel and building materials during construction). This consumption is considered an irreversible effect because once the resource is used it cannot be restored; although the effects are not significant based on Section 4.15.3;

- Adaptation of existing transportation infrastructure to accommodate the proposed project or DOSL Alternative, including stations and amenities will constrain certain future changes within the corridor (i.e., accommodation of left turns across dedicated transit lanes from minor roadways intersecting the route alignment);

- Reduction in capacity for other motorized modes of travel on segments where dedicated transit lanes are proposed will result in the redistribution of existing and future traffic from the proposed corridor to alternate routes and contribute to significant adverse traffic impacts in 2035;

- The proposed project will require the removal of up to 59 median trees along the corridor within the Cities of Oakland and San Leandro. The proposed project or DOSL Alternative will comply with the Migratory Bird Treaty Act to avoid or minimize impacts to biological resources. The proposed project would replace trees and landscaping removed during construction. As shown in Table 4.6-4 of the Final EIS/EIR, approximately 100 new trees would be planted within the City of Oakland. Thus, the impact is not considered significant.

- Long-term commitments for the proposed project or DOSL Alternative will consist of fuel consumption to operate the BRT vehicles. As discussed in Section 4.14, potential impacts of future energy consumption by the proposed project or DOSL Alternative is not considered significant.

- Pollutant emissions from project construction and operation will occur. Emissions of NOx during construction will exceed the BAAQMD’s significance threshold, even after the implementation of mitigation measures. This will result in a significant and unavoidable temporary impact.

- Construction noise impacts will be temporary and minimized through the implementation of mitigation measures. Operation of the proposed project or DOSL Alternative will contribute to ambient noise levels; however, project-related noise will not exceed applicable FTA standards.
10 CEQA ALTERNATIVES

10.1 ALTERNATIVES CONSIDERED AND DISMISSED FROM FURTHER CONSIDERATION

An EIR must briefly describe the rationale for selection of alternatives. The lead agency may make an initial determination as to which alternatives are potentially feasible; and therefore, merit in-depth consideration, and those which are clearly infeasible and need not be considered further. Alternatives that are remote or speculative, or the effects of which cannot be reasonably predicted, need not be considered [CEQA Guidelines Section 15126.6 (f)(3)]. This section identifies alternatives considered by the AC Transit, but rejected as infeasible and provides a brief explanation of the reasons for their exclusion. As noted above, alternatives may be eliminated from detailed consideration in the EIR if they fail to meet most of the project objectives, are infeasible, or do not avoid any significant environmental effects.

In addition to the No Build Alternative, the following alternatives were considered in the Draft EIS/EIR.

- Build Alternative 1 – Separate BRT and Local Service to Bay Fair BART
- Build Alternative 2 – Separate BRT and Local Service to San Leandro BART
- Build Alternative 3 – Combined BRT and Local Service to Bay Fair BART
- Build Alternative 4 – Combined BRT and Local Service to San Leandro BART

Following the circulation of the Draft EIS/EIR in 2007, each of the three cities in the corridor provided their input on selection of the proposed project in a public process held during spring 2010. As a result of decisions by the cities of San Leandro and Berkeley, the southern terminus of the proposed corridor was identified as the San Leandro BART station, and dedicated BRT lanes were deleted from segments of Telegraph Avenue in Berkeley. In June 2010, the AC Transit Board of Directors formally adopted the proposed project/LPA. The selection of the proposed project (LPA) is based on the Draft EIS/EIR analysis, consultation with permitting agencies, comments received during the Draft EIS/EIR review and comment period and more detailed analysis of the planning processes conducted by the cities of Berkeley, Oakland and San Leandro. The process for selecting the proposed project is described in greater detail in Section 2.1.3 of the Final EIS/EIR.

As discussed in Section 2.1.3, the Berkeley City Council voted to support a new alternative with a mix of transit and non-transit elements referred to as “Alternative B.” Alternative B would not include dedicated bus lanes on Telegraph Avenue and Shattuck Avenue, with extension of the project beyond University Avenue and Shattuck Avenue. Alternative B would also require conversion of Bancroft Way, Durant Avenue and southbound Shattuck Avenue, between University Avenue and Center Street, from one-way to two-way operations. This would require the installation of up to 10 new traffic signals. Further, the City recommended that AC Transit evaluate whether it would be “technically or financially feasible” to construct curb extension stations with platforms level with the bus floor and bus queue jump lanes to bypass auto traffic at congested intersections. Alternative B was determined to be technically and economically infeasible; and therefore, was not advanced for the following reasons:

1) The proposed conversion of one-way streets to two-way operations would not be eligible for FTA Small Starts funding which AC Transit is seeking for BRT implementation. As discussed in Section 8.2.2.1 of this Final EIS/EIR, FTA Small Starts funding would comprise $74.99 million, or 36.6 percent of the total capital costs of the proposed project. Small Starts funding is the largest single prospective funding source identified for the proposed project. Because selection of Alternative B would result in the loss of more than one-third of the total funding for all capital costs, implementation would be financially infeasible; and
2) Alternative B would be detrimental to transit riders and efficient transit operations. Conversion to two-way operations with an accompanying reduction in travel lanes could slow down bus operation and expose transit vehicles to more conflicts with other motor vehicles. The transit elements proposed by Berkeley for Telegraph Avenue would not improve performance sufficiently to offset the slower speeds in the Southside and Downtown areas.

The proposed project is a variation of Build Alternative 4 – Combined BRT and Local Service to San Leandro BART evaluated in the Draft EIS/EIR. For the portion of the alignment between 1st Avenue and 14th Avenue in the Eastlake District within the City of Oakland, two alignment variations were under consideration in the Draft EIS/EIR. The proposed project incorporates the selection of the International Boulevard-12th Street couplet variation.

10.2 SUMMARY OF ALTERNATIVES CONSIDERED.

As discussed above, CEQA requires the discussion of “a range of reasonable alternatives to a project or to the location of a project, which would feasibly attain most of the basic objectives of the project and avoid or substantially lessen any of the significant effects.” Section 15126.6 (e)(1) of the CEQA Guidelines states that an, analysis of a “no project” alternative is specifically required and shall address existing conditions, as well as projected future conditions that would be “reasonably expected to occur in the foreseeable future if the project were not approved, based on current plans and consistent with available infrastructure and community services.”

The No Build Alternative, which is described and analyzed in Chapters 2 through 9 of the Final EIS/EIR, is the “no project” alternative, as defined in Section 2.3.1 of the Final EIS/EIR. The No-Build Alternative includes all transportation improvements currently planned and programmed in the project area except for the East Bay BRT Project itself. The currently planned improvements in the project area have been updated to reflect any changes that have occurred in the period between circulation of the Draft EIS/EIR and preparation of this Final EIS/EIR. The No-Build Alternative includes projects such as the MacArthur BART Transit Village, Fruitvale BART Transit Village, and expansion of BART to serve the Oakland Airport and Warm Springs. Section 1.3.4 of the Final EIS/EIR provides further detail on these and other key projects currently planned and programmed for the project area.

As described in Section 15126.6 (c), other alternatives to be selected for consideration “shall be those that feasibly accomplish most of the basic objectives of the project and could avoid or substantially lessen one or more of the significant effects.” The Downtown Oakland San Leandro (DOSL) Alternative described in the Final EIS/EIR is an additional alternative to the proposed project that meets the selection criteria. Given the above considerations, the alternatives considered in this section are: (1) Alternative 1: the No Build Alternative, and (2) Alternative 2: the DOSL Alternative. Consistent with the analysis contained in Chapters 3 and 4 of this EIS/EIR, issue areas that could be adversely affected by the proposed project are: Transportation/Traffic, Land Use and Planning, Visual/Aesthetics, Cultural Resources Hazards and Hazardous Materials, Air Quality (construction and operation), Noise and Vibration, and Greenhouse Gases.

ENVIRONMENTALLY SUPERIOR ALTERNATIVE

Alternative 2 – DOSL Alternative, is the environmentally superior alternative because it would result in fewer traffic impacts than the proposed project. In addition, Alternative 2 substantially meets the project objectives as described above; and therefore, is considered feasible.
11 STATEMENT OF OVERRIDING CONSIDERATIONS

As set forth in the preceding sections of these Findings, the proposed project would result in the following significant and unavoidable traffic and circulation impacts.

2015 – AFTERNOON PEAK

- Telegraph Avenue/Alcatraz Avenue intersection in the City of Oakland would operate at LOS E with mitigation. This would be a significant and unavoidable adverse impact.

2035 – MORNING PEAK

- Telegraph Avenue/Alcatraz Avenue intersection in the City of Oakland would operate at LOS E with mitigation. This would be a significant and unavoidable adverse impact.
- Telegraph Avenue/55th Street intersection in the City of Oakland would operate at LOS E with mitigation. This would be a significant and unavoidable adverse impact.
- East 12th Street/5th Avenue intersection in the City of Oakland would operate at LOS F with mitigation. This would be a significant and unavoidable adverse impact.

2035 – AFTERNOON PEAK

- Telegraph Avenue/Alcatraz Avenue intersection in the City of Oakland would operate at LOS with mitigation. This would be a significant and unavoidable adverse impact.
- Telegraph Avenue/55th Street intersection in the City of Oakland would operate at LOS E with mitigation. This would be a significant and unavoidable adverse impact.
- Telegraph Avenue/40th Street intersection in the City of Oakland would operate at LOS E with mitigation. This would be a significant and unavoidable adverse impact.
- Telegraph Avenue/West MacArthur Boulevard intersection in the City of Oakland would operate at LOS E with mitigation. This would be a significant and unavoidable adverse impact.
- Ashby Avenue/Claremont Avenue intersection in the City of Berkeley would operate at LOS F with mitigation. This would be a significant and unavoidable adverse impact.

Regarding the DOSL, traffic operation impacts resulting in operations below established local standards would occur at 17 of the 129 study intersections in Year 2015 and Year 2035. Of those impacts, eight are projected to occur in both Year 2015 and Year 2035; nine would occur only in the Year 2035 scenario. For those impacts not projected to occur in Year 2015, but that would occur in Year 2035, it is likely that the impact would occur between 2015 and 2035, pending future land use and circulation patterns.

Impacts can be mitigated to result in intersection operations that do not exceed significance thresholds at most of these locations. Mitigation measures are proposed at all 17 impacted locations, although at one location they are not sufficient to result in a less than significant increase in delay associated with the project. Mitigation of impacts to reduce the project impact to a less than significant level for Year 2015 impacts would be possible at all study intersections.

Mitigation of impacts to reduce the project impact to a less than significant level for Year 2035 impacts would not be possible at the following signalized intersection in the City of Oakland:

- East 12th Street & 5th Avenue (morning peak hour).

Despite these impacts, the AC Transit Board of Director has agreed to certify the Final EIS/EIR with the option of later approving either the proposed project or DOSL Alternative as the preferred alternative. To do so, AC Transit must first adopt this Statement of Overriding Considerations. Any one of the reasons for approval cited below is sufficient to justify approval of either the proposed project or DOSL
Alternative. Thus, even if a Court were to conclude that not every reason is supported by substantial evidence, AC Transit would stand by its determination that each individual reason is sufficient. The substantial evidence supporting the various benefits can be found in the preceding sections of these Findings, which are incorporated by reference into this Section, and in the documents listed in the Record of Proceedings (Section 3.4.3 of these Findings). In addition, AC Transit finds that the proposed project would have the following economic, social, or other benefits:

Improve transit service and better accommodate high existing bus ridership. The proposed project or DOSL would provide improved service to current riders, including low-income and transit-dependent populations, by offering higher frequency, faster, and more reliable service, along with improved security, cleanliness, and comfort.

Increase transit ridership by providing a viable and competitive transit alternative to the private automobile. The proposed project or DOSL would attract new riders by offering improved transit service and facilities, transit travel times competitive with auto travel, and a rail-like experience proven to attract riders using automobiles as their primary form of transportation.

Improve and maintain efficiency of transit service delivery and lower AC Transit’s operating costs per rider. The proposed project or DOSL would improve fleet speeds and service efficiencies by reducing delays from running in mixed-flow traffic and during slow boarding and alighting of passengers. The investment in bus-only lanes, stations, and multi-door boarding means that the improvement in travel time and reliability will continue into the future without continual service degradation due to increased traffic congestion and delays with increased boardings.

Support local and regional planning goals to organize development along transit corridors and around transit stations. Providing BRT infrastructure of dedicated transit lanes and highly visible transit stations offers a sense of permanence that can help cities attract investment in transit-oriented development.

For each and all of these reasons, AC Transit finds that, on balance, the benefits of the proposed project and DOSL outweigh the unavoidable environmental risks. Although significant unavoidable impacts would result from implementation of the proposed project and DOSL, the level of environmental risk is considered acceptable given the range of benefits associated with implementation of the proposed project or DOSL.
MITIGATION MONITORING AND REPORTING PROGRAM

THE PURPOSE OF MONITORING

When a lead agency approves a project, it is doing so with a fully disclosed understanding of the project’s impacts. Each lead agency has an obligation to adopt feasible mitigation measures and impose design features that ensure a project’s environmental effects are reduced, avoided, or eliminated—except in those cases where statements of overriding consideration have been adopted. The Environmental Impact Report/Environmental Impact Statement (EIS/EIR) prepared for the East Bay Bus Rapid Transit (BRT) project identifies a number of potentially significant adverse environmental impacts that may occur if the project is approved and developed. Measures are recommended for each of the identified significant adverse impacts to mitigate those effects. Further, if the proposed project were approved, requirements enacted by ordinance or policy are imposed by Alameda-Contra Costa Transit District (AC Transit) and other regulatory agencies.

Section 21081.6 of the Public Resources Code, the California Environmental Quality Act, requires a public agency to adopt a monitoring and reporting program assessing and ensuring the implementation of required standard conditions and mitigation measures applied to proposed developments. Specific reporting and monitoring requirements enforced during project initiation, implementation, and ongoing operation are adopted coincidental to final approval of the project by the lead agency and subsequent responsible agencies. Each potentially significant environmental impact is identified with accompanying mitigation measures to reduce potential impacts to less than significant.

DESIGN FEATURES/MITIGATION MEASURES

Design features/mitigation measures are requirements usually administered with defined parameters of administrative discretion and are imposed on projects at either the entitlement stage or when a permit is issued. These conditions are agreed to by AC Transit or imposed upon them by each of the Responsible Agencies identified in Section 1.5 of the Final EIS/EIR.

Design features/mitigation measures are written to be either time specific or quantifiable. This milestone helps the implementing agency and permit holder understand what needs to be completed by a certain deadline or whether a standard condition is ongoing during the operational life of the site. Clearly written and defined recommended conditions not only mitigate some of the potentially significant environmental effects, but also provide assurances to the permit holder and various agencies that all parties to this project understand what is expected and when it is required to be completed.

Time Specific conditions may have an established date by which they must be completed. The date may be a reference to a point in the permitting process. A condition that must be continuously monitored or reported is also a time specific condition. Quantifiable conditions are those conditions for which a measurable standard has been imposed. This metric allows the agency responsible for monitoring and reporting to empirically determine whether the permit holder is in compliance with the requirement. The measures listed in this table are intended to reduce, minimize or avoid adverse impacts of the proposed project and DOSL Alternative. The measures have a geographic basis. Should the proposed project be approved as the preferred project for construction, measures contained herein would apply throughout the corridor from downtown Berkeley to San Leandro BART. Should the DOSL be approved, the measures would apply; however, they would be limited, to the corridor from Downtown Oakland to San Leandro BART.

Table 1 is read across each row with the following meanings:

1. Significant Effect is a summary of the identified potentially significant impact, if any.
2. Design Features/Mitigation summarizes the language from the Final EIS/EIR addressing design features and specific mitigation measures that would be implemented to reduce potential environmental impacts.

3. “Q/T” defines whether the condition is Quantifiable, Time Specific, or Both.

4. Time Frame indicates when a specific condition must be met.

TABLE 1: DESIGN FEATURES AND MITIGATION MEASURES

<table>
<thead>
<tr>
<th>Significant Effect</th>
<th>Design Feature/Mitigation</th>
<th>Q/T</th>
<th>Time Frame</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visual/Aesthetic Resources</td>
<td>Station amenities will be designed in coordination with the cities of Berkeley, Oakland, and San Leandro. Materials will not be stockpiled on site, and demolition materials will be hauled away. Debris will be cleared daily. Best Management Practices will be implemented to protect mature trees, other vegetation, and the existing streetscape during construction. The proposed project will include the addition of new landscaped median such that the total length of median landscaping will increase by approximately 4,700 feet after all proposed traffic mitigation improvements are incorporated into the project. The dedicated bus lanes within the Fruitvale and San Leandro-Oakland border areas shall be designed with streetscape elements similar to those being removed to maintain the existing visual character.</td>
<td>T</td>
<td>During design and construction</td>
</tr>
<tr>
<td>Air Quality</td>
<td>Construction contractors shall implement the Bay Area Air Quality Management District (BAAQMD) Basic Construction Mitigation Measures listed in Table 4.17-2 of the Final EIS/EIR, and the applicable Additional Construction Mitigation Measures. The following controls should be implemented at all construction sites:</td>
<td>T</td>
<td>During construction</td>
</tr>
<tr>
<td>Significant Effect</td>
<td>Design Feature/Mitigation</td>
<td>Q/T</td>
<td>Time Frame</td>
</tr>
<tr>
<td>--------------------</td>
<td>--------------------------</td>
<td>-----</td>
<td>------------</td>
</tr>
<tr>
<td>contaminant (TAC) emissions, and odors. It also would increase localized pollutant concentrations near construction. Construction emissions would be temporary, and not result in any long-term impacts.</td>
<td>All exposed surfaces (e.g., parking areas, staging areas, soil piles, graded areas, and unpaved access roads) shall be watered two times per day. All haul trucks transporting soil, sand, or other loose material off-site shall be covered. All visible mud or dirt track-out onto adjacent public roads shall be removed using wet power vacuum street sweepers at least once per day. The use of dry power sweeping is prohibited. All vehicle speeds on unpaved roads shall be limited to 15 mph. All roadways, driveways, and sidewalks to be paved shall be completed as soon as possible. Building pads shall be laid as soon as possible after grading unless seeding or soil binders are used. Idling times shall be minimized either by shutting equipment off when not in use or reducing the maximum idling time to 5 minutes (as required by the California air-borne toxics control measure Title 13, Section 2485 of California Code of Regulations [CCR]). Clear signage shall be provided for construction workers at all access points. All construction equipment shall be maintained and properly tuned in accordance with manufacturer’s specifications. All equipment shall be checked by a certified mechanic and determined to be running in proper condition prior to operation. Post a publicly visible sign with the telephone number and person to contact at the lead agency regarding dust complaints. This person shall respond and take corrective action within 48 hours. The Air District’s phone number also shall be visible to ensure compliance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Significant Effect</td>
<td>Design Feature/Mitigation</td>
<td>Q/T</td>
<td>Time Frame</td>
</tr>
<tr>
<td>--------------------</td>
<td>--------------------------</td>
<td>-----</td>
<td>------------</td>
</tr>
<tr>
<td>with applicable regulations. The following measures are recommended for projects with construction emissions above the threshold: All exposed surfaces shall be watered at a frequency adequate to maintain minimum soil moisture of 12 percent. Moisture content can be verified by lab samples or moisture probe. All excavation, grading, and/or demolition activities shall be suspended when average wind speeds exceed 20 mph. Wind breaks (e.g., trees and fences) shall be installed on the windward side(s) of actively disturbed areas of construction. Wind breaks should have at maximum 50 percent air porosity. Vegetative ground cover (e.g., fast-germinating native grass seed) shall be planted in disturbed areas as soon as possible and watered appropriately until vegetation is established. The simultaneous occurrence of excavation, grading, and ground-disturbing construction activities on the same area at any one time shall be limited. Activities shall be phased to reduce the amount of disturbed surfaces at any one time. All trucks and equipment, including their tires, shall be washed off prior to leaving the site. Site accesses to a distance of 100 feet from the paved road shall be treated with a 6 inch to 12 inch compacted layer of wood chips, mulch, or gravel. Sandbags or other erosion control measures shall be installed to prevent silt runoff to public roadways from sites with a slope greater than 1 percent. Minimize the idling time of diesel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Significant Effect</td>
<td>Design Feature/Mitigation</td>
<td>Q/T</td>
<td>Time Frame</td>
</tr>
<tr>
<td>--------------------</td>
<td>---------------------------</td>
<td>-----</td>
<td>------------</td>
</tr>
</tbody>
</table>
| powered construction equipment to two minutes. The project shall develop a plan demonstrating that the off-road equipment (more than 50 horsepower) to be used in the construction project (e.g., owned, leased, and subcontractor vehicles) would achieve a project wide fleet-average 20 percent NOX reduction and 45 percent PM reduction compared to the most recent ARB fleet average. Acceptable options for reducing emissions include the use of late model engines, low-emission diesel products, alternative fuels, engine retrofit technology, after-treatment products, add-on devices such as particulate filters, and/or other options as such become available. Use low volatile organic compound (VOC) (i.e., reactive organic gases) coatings beyond the local requirements (i.e., Regulation 8, Rule 3: Architectural Coatings). All construction equipment, diesel trucks, and generators shall be equipped with best available control technology for emission reductions of NOx and PM. All contractors shall use equipment that meets California Air Resources Board’s most recent certification standard for off-road heavy duty diesel engines. Construction contractors shall comply with BAAQMD Regulation 11 (Hazardous Pollutants) Rule 2 (Asbestos Demolition, Renovation, and Manufacturing). The requirements for demolition activities include removal standards, reporting requirements, and mandatory monitoring and record keeping. The following avoidance, minimization and control measures to reduce air emissions associated with project...
<table>
<thead>
<tr>
<th>Significant Effect</th>
<th>Design Feature/Mitigation</th>
<th>Q/T</th>
<th>Time Frame</th>
</tr>
</thead>
<tbody>
<tr>
<td>construction:</td>
<td>All active construction areas shall be watered at least twice daily; All trucks hauling soil, sand, and other loose materials shall be covered and shall maintain at least two feet of freeboard. All unpaved access roads, parking areas, and staging areas in the construction area shall be watered at least three times daily or shall be applied with non-toxic soil stabilizers. All paved access roads, parking areas, and staging areas in the construction area shall be swept daily with water sweepers. Streets shall be swept daily with water sweepers if visible soil material is carried onto adjacent public streets. Non-toxic soil stabilizers shall be applied to inactive construction areas (previously graded areas that are inactive for 10 days or more). Exposed stockpiles of dirt, sand, or debris shall be enclosed, covered, watered at least twice daily, or applied with non-toxic soil binders. Traffic speeds on unpaved roads shall be limited to 15 mph. Wheel washers shall be installed on all trucks or tires/tracks of all trucks, and equipment leaving the construction area shall be washed. Excavation and grading activities shall be suspended when winds exceed 25 mph. Construction equipment shall use cool exhaust gas recirculation. Construction equipment shall use aqueous diesel fuel. Construction contracts shall explicitly stipulate that all construction equipment shall be properly tuned and maintained.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Biological Resources
<table>
<thead>
<tr>
<th>Significant Effect</th>
<th>Design Feature/Mitigation</th>
<th>Q/T</th>
<th>Time Frame</th>
</tr>
</thead>
<tbody>
<tr>
<td>Landscape trees would be removed during construction. These trees could contain nesting birds subject to protection per the Migratory Bird Treaty Act.</td>
<td>Best Management Practices will be followed to avoid effects to surface water. In compliance with the Executive Order on Invasive Species, E.O. 13112, landscaping included in the proposed project or DOSL Alternative will not use species listed as noxious weeds. All potential nest tree removal activities shall be conducted during the nonbreeding season under the supervision of a qualified biologist, if feasible. The size of the nest buffer shall be determined by the biologist in consultation with California Department of Fish and Game (CDF&G) and will be based on the nesting species and its sensitivity to disturbance at the nest. Mature trees will not be removed during breeding season. (March through August). Any trees impacted by the project will be replaced in accordance with local tree protection ordinances. Mature trees will be removed during daylight hours when roosting is not anticipated.</td>
<td>T</td>
<td>Prior to and during construction</td>
</tr>
</tbody>
</table>

Cultural Resources

<p>| Cultural materials may be unearthed during construction. | An archaeologist will monitor any construction work within the project alignment in sensitive locations (identified in the Site Treatment Plan and second addendum archaeological survey report). If buried cultural materials (either prehistoric or historic) are encountered during construction, work would stop in that area until a qualified archaeologist can evaluate the nature and significance of the find. Depending on the type of feature, the archaeologist may recommend archaeological excavation to either evaluate, record, or remove the feature. If human remains are encountered, | T | During construction |</p>
<table>
<thead>
<tr>
<th>Significant Effect</th>
<th>Design Feature/Mitigation</th>
<th>Q/T</th>
<th>Time Frame</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>construction work in the area would be halted and the Alameda County Coroner contacted. In addition, if the remains are Native American, the California Native American Heritage Commission (NAHC) would be immediately contacted. The NAHC would identify the most likely descendants who would be consulted on the disposition of Native American human remains and associated artifacts. Arrangements will be made with an authorized facility for permanent curation of any recovered artifactual materials. The archaeological monitor will inform construction crews, prior to construction work, of material types that might be encountered under the street. Prior to construction, contractors and workers will be informed of reporting requirements in the event that buried cultural materials or human remains were found, whether in monitored areas or not. If within State right-of-way there is a cultural resource or burial discovery during the course of either identification efforts or construction activities, the Caltrans Office of Cultural Resource Studies, District 4, shall be immediately contacted and all construction/activities within 50 feet of the find shall cease until it has been assessed by Caltrans Office of Cultural Resource Studies. A cultural resource monitoring report will be prepared that summarizes findings, if any, of monitoring activities. The report will be made available to the public, resources agencies, and other interested parties, including Caltrans District 4.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hazards and Hazardous Materials
<table>
<thead>
<tr>
<th>Significant Effect</th>
<th>Design Feature/Mitigation</th>
<th>Q/T</th>
<th>Time Frame</th>
</tr>
</thead>
<tbody>
<tr>
<td>The potential for encountering pre-existing hazardous materials is present in the types of construction proposed for the project corridor.</td>
<td>Construction AC Transit will require the contractor to develop and implement a Worker Health and Safety Plan (WH&SP) to address the handling and storage of hazardous construction materials. A plan that effectively protects those in closest proximity to the source of contaminants would protect corridor residents and others.</td>
<td>T</td>
<td>Prior to and during construction</td>
</tr>
</tbody>
</table>

OPERATION

Preconstruction field surveys of identified environmental risk sites to observe current conditions.

Regulatory file review of environmental risk sites to determine current status of sites and extent of contamination.

Subsurface exploration of segments of the project alignment next to or down gradient from any environmental risk site. (If construction of the project warrants.)

Hydrology and Water Quality

Exposure and loosening of soils and subsurface materials have potential to affect stormwater runoff into storm drains along the BRT alignment.

Drainage patterns may be temporarily altered during construction as surfaces would be disturbed to construct the improvements.

Construction would disturb ground surface to install project improvements. This could increase the potential for erosion and related water quality impacts.

Best Management Practices will be implemented to prevent dust, debris, and sediment from entering runoff. Drain basins will be equipped with temporary devices to collect any sediment and debris that does enter runoff during construction. AC Transit will require the contractor to develop and implement a Stormwater Pollution Prevention Plan, Erosion and Sediment Control Plan, and a Spill Prevention, Contaminant and Clean-up Plan (SPCCP). The SPCCP will address containment of fuels, oils, lubricants and other construction materials that could enter runoff.

If the disturbance area would be more than one acre, compliance with National Pollution Discharge Elimination System requirements would be required. A Storm Water
<table>
<thead>
<tr>
<th>Significant Effect</th>
<th>Design Feature/Mitigation</th>
<th>Q/T</th>
<th>Time Frame</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pollution Prevention Plan (SWPPP) would be prepared in accordance with the Construction General Permit (2009-0009-DWQ), which will include construction Best Management Practices (BMPs) for stormwater/erosion control, and a Storm Water Management Plan (SWMP), which will include post-construction BMPs.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Noise and Vibration</td>
<td>Construction may temporarily increase noise levels at receptors located in proximity to construction areas. Control measures, such as the following, would minimize noise and vibration disturbances at sensitive areas during construction: Use newer equipment with improved noise muffling and ensure that all equipment items have the manufacturers’ recommended noise abatement measures, such as mufflers, engine covers, and engine vibration isolators intact and operational. Newer equipment would generally be quieter in operation than older equipment. All construction equipment should be inspected at periodic intervals to ensure proper maintenance and presence of noise control devices (e.g., mufflers, shrouding, etc.). Perform all construction in a manner to minimize noise and vibration. Use construction methods or equipment that will provide the lowest level of noise and ground vibration impact. During asphalt cutting, a temporary noise barrier should be placed between the cutting area and noise sensitive sites. Conduct truck loading, unloading and hauling operations so that noise is kept to a minimum by carefully selecting routes to avoid going through residential neighborhoods to the greatest possible extent. Construction lay-down or staging areas should be selected in indu-</td>
<td>T</td>
<td>During construction</td>
</tr>
<tr>
<td>Significant Effect</td>
<td>Design Feature/Mitigation</td>
<td>Q/T</td>
<td>Time Frame</td>
</tr>
<tr>
<td>--------------------</td>
<td>---------------------------</td>
<td>-----</td>
<td>------------</td>
</tr>
<tr>
<td>industrially zoned districts. If industrially zoned areas are not available, commercially zoned areas may be used, or locations that are at least 90 feet from any noise sensitive land use such as residences, hotels, and motels. Ingress and egress to and from the staging areas should be on collector streets or greater (higher street designations are preferred). Turn off idling equipment. Minimize construction activities during evening, nighttime, weekend, and holiday periods. Permits may be required in some cities before construction can be performed in noise sensitive areas between 7:00 p.m. and 7:00 a.m. The construction contractor should be required by contract specification to comply with all local noise ordinances and obtain all necessary permits and variances. It is expected that ground-borne vibration from construction activities would cause only intermittent localized intrusion along the East Bay BRT route. Procedures, such as the following, would be used to minimize the potential for annoyance or damage from construction vibration: When possible, limit the use of construction equipment that creates high vibration levels, such as vibratory rollers and hammers, operating within 130 feet of residential structures. Require vibration monitoring during vibration-intensive activities. Restrict the hours of vibration-intensive equipment or activities such as vibratory rollers so that impacts to residents are minimal (e.g., weekdays during daytime hours only when as many residents as possible are away from home).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Significant Effect</td>
<td>Design Feature/Mitigation</td>
<td>Q/T</td>
<td>Time Frame</td>
</tr>
<tr>
<td>--------------------</td>
<td>---------------------------</td>
<td>-----</td>
<td>------------</td>
</tr>
<tr>
<td>Utilities</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Construction may require relocation of water supply and wastewater infrastructure.</td>
<td>AC Transit and its contractors will coordinate closely with utility providers to give advance notice of any required short-term interruptions of service to customers. Contingency plans will be developed in coordination with utility providers to address unanticipated encounters with buried utilities and/or unscheduled interruptions in service.</td>
<td>T</td>
<td>During design and construction</td>
</tr>
<tr>
<td>Traffic and Transportation</td>
<td>CONSTRUCTION</td>
<td>T</td>
<td>During design and construction</td>
</tr>
<tr>
<td>Construction and operation of the proposed project and DOSL Alternative may impact pedestrian, bicycle, parking and traffic/circulation resources.</td>
<td>One lane of vehicular traffic will be maintained in each direction during business hours. Pedestrian access (including wheelchair accessible ramps and temporary sidewalks) will be maintained during construction. Traffic detours will be designated. Bicycle traffic may have to be rerouted to parallel facilities during construction. AC Transit will establish traffic, pedestrian, and bicycle control plans for the construction period. These plans will be approved by local cities. A transportation management plan (TMP) will be developed to provide advance notice of information on construction activities and durations, detours, and access issues during each state of construction. OPERACION</td>
<td>T</td>
<td>During design and construction</td>
</tr>
<tr>
<td></td>
<td>Pedestrian</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Physical features of the proposed project and DOSL Alternative, such as improved high-visibility pedestrian crossings, signs and median refuge islands along the corridor, will be installed to enhance the existing pedestrian environment.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bicycle</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The proposed addition or expansion of bicycle lanes to Telegraph Avenue, East 12th Street and International Boulevard would be a signif-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Significant Effect</td>
<td>Design Feature/Mitigation</td>
<td>Q/T</td>
<td>Time Frame</td>
</tr>
<tr>
<td>--------------------</td>
<td>---------------------------</td>
<td>-----</td>
<td>------------</td>
</tr>
<tr>
<td></td>
<td>icant improvement for cyclists, creating dedicated facilities for uninterrupted bicycle travel over long distances. BRT stations would be designed to allow level boarding and easy loading of bicycles; all BRT vehicles would include bicycle racks. These design features would enhance bicycle resources within the proposed project and DOSL corridor.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parking</td>
<td>Replace all metered spaces lost by metering with meters at an equivalent number of other non-restricted or time-restricted spaces. Ensure parking supply is not reduced such that occupancies will consistently exceed 85 percent of supply due to implementation of build alternatives. Ensure parking changes due to mitigations do not adversely affect residential neighborhoods, in particular residential parking.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRAFFIC/CIRCULATION - 2015</td>
<td>CITY OF BERKELEY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alcatraz Avenue & College Avenue off-alignment</td>
<td>Proposed Mitigation: Restripe eastbound approach to add an exclusive right-turn lane. Add a new northbound left-turn lane. Coordinate signal with Claremont Avenue & College Avenue and optimize cycle length, timing splits and timing offset.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alcatraz Avenue & Adeline Street</td>
<td>Proposed Mitigation: Coordinate signal with Ashby Avenue & Adeline Street and Ashby Avenue & Shattuck Avenue and optimize signal cycle length, timing splits and timing offset. Requires modifying phasing at Ashby Avenue & Adeline Street and upgrading signal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Significant Effect</td>
<td>Design Feature/Mitigation</td>
<td>Q/T</td>
<td>Time Frame</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>-----</td>
<td>------------</td>
</tr>
<tr>
<td>controller at Ashby Avenue & Shattuck Avenue. Optimize signal timing splits and offset. Restripe westbound approach to add an exclusive left-turn lane. Prohibit eastbound left-turns. Prohibit pedestrian crossing of Adeline Street on the south side of the intersection. Extend the northbound and southbound left-turn pockets.</td>
<td>CITY OF OAKLAND Telegraph Avenue & Alcatraz Avenue</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proposed Mitigation: Restripe northbound approach to convert existing exclusive left-turn lane to a shared left-turn/through lane. Provide a second northbound receiving lane that extends approximately 150 feet north of the intersection. Optimize signal cycle length, timing splits and timing offset and modify intersection phasing. Remove southbound u-turn. Restripe eastbound and westbound approaches to add exclusive right-turn lanes.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Telegraph Avenue & 56th Street</td>
<td>Proposed Mitigation: Add an exclusive northbound right-turn lane. Optimize signal cycle length, timing splits and timing offset.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proposed Mitigation: Re-stripe eastbound approach to add an exclusive left-turn lane. Optimize signal cycle length, timing splits and timing offset.</td>
<td>Telegraph Avenue & 55th Street</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proposed Mitigation: Add new exclusive right-turn lanes on both eastbound and westbound approaches.</td>
<td>Martin Luther King Jr. Way & 55th Street</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proposed Mitigation: Optimize</td>
<td>Martin Luther King Jr. Way & 52nd Street</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Significant Effect</td>
<td>Design Feature/Mitigation</td>
<td>Q/T</td>
<td>Time Frame</td>
</tr>
<tr>
<td>--------------------</td>
<td>---------------------------</td>
<td>-----</td>
<td>------------</td>
</tr>
</tbody>
</table>
| Signal timing splits. | **Shattuck Avenue & 52nd Street**
 Proposed Mitigation: Optimize signal cycle length, timing splits and timing offset. | | |
| | **Telegraph Avenue & 51st Street**
 Proposed Mitigation: Add Telegraph Avenue & 55th Street and Shattuck Avenue & 52nd Street to the coordination zone. Optimize signal cycle length, timing splits and timing offset. Construct an additional southbound left-turn lane. Eliminate the left-turn lane on the northbound approach and re-direct this movement via Shattuck Avenue & 52nd Street. Restripe northbound approach to replace the left-turn lane with a through lane and provide a second northbound receiving lane that extends approximately 80 feet north of Telegraph Avenue & Claremont Avenue. | | |
| | **Telegraph Avenue & West MacArthur Boulevard**
 Proposed Mitigation: Restripe westbound approach to convert existing shared through/right-turn lane to an exclusive right-turn lane. Optimize signal cycle length, timing splits and timing offset. | | |
| | **East 12th Street (southbound) & 14th Avenue**
 Proposed Mitigation: Coordinate signals at East 12th Street (SB) & 14th Avenue, East 12th Street (NB) & 14th Avenue, and International Boulevard & 14th Avenue with East 12th Street and International Boulevard through Eastlake. Optimize signal cycle length, timing splits, and timing offsets. | | |
| | **International Boulevard & 29th Avenue**
 Proposed Mitigation: Coordinate signals on International Boulevard between 15th Street and 29th Street and optimize signal cycle length, | | |
<table>
<thead>
<tr>
<th>Significant Effect</th>
<th>Design Feature/Mitigation</th>
<th>Q/T</th>
<th>Time Frame</th>
</tr>
</thead>
</table>
| timing splits, and timing offsets. | **International Boulevard between Fruitvale Avenue and 38th Avenue**
Impacts to intersections in the Fruitvale area and along International Boulevard between Fruitvale and 38th Avenue will be mitigated in part with the provision of additional capacity on parallel arterials. These improvements serve to enhance San Leandro Street as an alternative to International Boulevard and to improve traffic flow in the Fruitvale area. | | |
| **Proposed Mitigation:** Additional turn pockets will be provided at a number of intersections along the portion of San Leandro Street between Fruitvale Avenue and 50th Avenue. In addition, turn pockets will be added at the intersection of East 12th Street and 29th Avenue. The intersections of East 10th Street/San Leandro Street with Fruitvale Avenue and Derby Avenue with East 12th Street will be reconstructed to provide additional capacity. East 10th Street and San Leandro Street will be realigned at Fruitvale Avenue to provide a through connection at the intersection. Signals will be installed at the closely spaced intersections of Derby Avenue and northbound and southbound East 12th Street. East 10th Street and Derby Avenue (west of East 12th Street) will be restriped to improve vehicular flow. Signals on San Leandro Street from 37th Street to 50th Street will be coordinated. | | |
| **East 12th Street & Fruitvale Avenue**
Proposed Mitigation: In addition to the improvements identified above for San Leandro Street, East 12th Street, and East 10th Street, restripe the eastbound approach to convert | | |
<table>
<thead>
<tr>
<th>Significant Effect</th>
<th>Design Feature/Mitigation</th>
<th>Q/T</th>
<th>Time Frame</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>An existing through/left-turn lane to a second left-turn only lane. Restripe the northbound approach to convert an existing exclusive right-turn lane to a shared through/right-turn lane. Optimize signal cycle length, timing splits and timing offsets for all signals in the signal coordination zone.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>International Boulevard & 38th Street</td>
<td>Proposed Mitigation: In addition to the improvements identified above for San Leandro Street, East 12th Street, and East 10th Street, coordinate signals on International Boulevard between 31st and 46th Street and optimize signal cycle length, timing splits and timing offsets for all signals in the signal coordination zone.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>International Boulevard & 42nd Street</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Proposed Mitigation: Maintain two northbound and two southbound through lanes on International Boulevard between 41st Avenue and 44th Avenue. Over this segment, the southbound BRT would operate in mixed flow. Optimize signal cycle length, timing splits and timing offsets for all signals in the signal coordination zone.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>International Boulevard & Havenscourt Boulevard</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Proposed Mitigation: Maintain two northbound and two southbound through lanes on International Boulevard between 65th Avenue and 67th Avenue. Between 65th Avenue and 67th Avenue, the southbound BRT would operate in mixed flow. Between 66th Avenue and 67th Avenue, the northbound BRT would operate in mixed flow. Provide enhanced pedestrian crossings and intersection controls at International Boulevard and 65th Avenue</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Significant Effect</td>
<td>Design Feature/Mitigation</td>
<td>Q/T</td>
<td>Time Frame</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>-----</td>
<td>------------</td>
</tr>
<tr>
<td>and International Boulevard and 67th Avenue where buses transition to and from dedicated lanes. At the intersection of International Boulevard & Havenscourt Boulevard, provide protected left-turn phasing on all approaches. Remove northbound and southbound u-turns and prohibit right turns on red. Coordinate and optimize International Boulevard cycle lengths between 66th Street and 78th Street.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>International Boulevard & Hegenberger Expressway</td>
<td>Proposed Mitigation: Maintain two northbound and southbound through lanes on International Boulevard between 72nd Avenue and 74th Avenue. Restripe the westbound approach to add an exclusive right-turn lane. Optimize signal timing splits and timing offsets for all signals on International Boulevard between 66th Avenue and 78th Avenue.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>International Boulevard & 98th Avenue</td>
<td>Proposed Mitigation: Maintain two northbound through lanes on International Boulevard from 99th Avenue to 97th Avenue and construct an additional southbound left-turn lane on International Boulevard at 98th Avenue. Optimize signal cycle length, timing splits and timing offset.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2015 w/DOSL</td>
<td>The DOSL Alternative does not result in significant vehicular impacts at intersections north of downtown Oakland. Therefore, the mitigation measures identified at those intersections as associated with the proposed project would not be required. The required mitigation measures from downtown Oakland to San Leandro are iden-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Significant Effect</td>
<td>Design Feature/Mitigation</td>
<td>Q/T</td>
<td>Time Frame</td>
</tr>
<tr>
<td>--------------------</td>
<td>---------------------------</td>
<td>-----</td>
<td>------------</td>
</tr>
<tr>
<td>tical to those identified under the proposed project. To further clarify, the following mitigation measures are proposed with the DOSL Alternative to partially or fully mitigate significant vehicular impacts at 8 locations:</td>
<td>East 12th Street (southbound) & 14th Avenue</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coordinate signals at East 12th Street (SB) & 14th Avenue, East 12th Street (NB) & 14th Avenue, and International Boulevard & 14th Avenue with East 12th Street and International Boulevard through Eastlake. Optimize signal cycle length, timing splits, and timing offsets.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>International Boulevard & 29th Avenue</td>
<td>Coordinate signals on International Boulevard between 15th Street and 29th Street and optimize signal cycle length, timing splits, and timing offsets.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>International Boulevard between Fruitvale Avenue and 38th Avenue</td>
<td>Impacts to intersections in the Fruitvale area and along International Boulevard between Fruitvale and 38th Avenue will be mitigated in part with the provision of additional capacity on parallel arterials. These improvements serve to enhance San Leandro Street as an alternative to International Boulevard and to improve traffic flow in the Fruitvale area. Additional turn pockets will be provided at a number of intersections along the portion of San Leandro Street between Fruitvale Avenue and 50th Avenue. In addition, turn pockets will be added at the intersection of East 12th Street and 29th Avenue. The intersections of East 10th Street/San Leandro Street with Fruitvale Ave-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Significant Effect</td>
<td>Design Feature/Mitigation</td>
<td>Q/T</td>
<td>Time Frame</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>-----</td>
<td>------------</td>
</tr>
<tr>
<td>Avenue and Derby Avenue with East 12th Street will be re-constructed to provide additional capacity. East 10th Street and San Leandro Street will be realigned at Fruitvale Avenue to provide a through connection at the intersection. Signals will be installed at the closely spaced intersections of Derby Avenue and northbound and southbound East 12th Street. East 10th Street and Derby Avenue (west of East 12th Street) will be re-striped to improve vehicular flow. Signals on San Leandro Street from 37th Street to 50th Street will be coordinated.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>East 12th Street & Fruitvale Avenue</td>
<td>In addition to the improvements identified above for San Leandro Street, East 12th Street, and East 10th Street, restrripe the eastbound approach to convert an existing through/left-turn lane to a second left-turn only lane. Restripe the northbound approach to convert an existing exclusive left-turn lane to a through lane. Optimize signal cycle length, timing splits and timing offsets for all signals in the signal coordination zone.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>International Boulevard & 38th Street</td>
<td>In addition to the improvements identified above for San Leandro Street, East 12th Street, and East 10th Street, coordinate signals on International Boulevard between 31st and 46th Street and optimize signal cycle length, timing splits and offsets for all signals in the signal coordination zone.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>International Boulevard & 42nd Street</td>
<td>Maintain two northbound and two southbound through lanes on International Boulevard between 41st Avenue and 44th Avenue. Over this</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Significant Effect</td>
<td>Design Feature/Mitigation</td>
<td>Q/T</td>
<td>Time Frame</td>
</tr>
<tr>
<td>--------------------</td>
<td>---------------------------</td>
<td>-----</td>
<td>------------</td>
</tr>
<tr>
<td></td>
<td>segment, the southbound BRT would operate in mixed flow. Optimize signal cycle length, timing splits and timing offsets for all signals in the signal coordination zone.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>International Boulevard & Havenscourt Boulevard</td>
<td>Maintain two northbound and two southbound through lanes on International Boulevard between 65th Avenue and 67th Avenue. Between 65th Avenue and 67th Avenue, the southbound BRT would operate in mixed flow. Between 66th Avenue and 67th Avenue, the northbound BRT would operate in mixed flow. Provide enhanced pedestrian crossings and intersection controls at International Boulevard and 65th Avenue and International Boulevard and 67th Avenue where buses transition to and from dedicated lanes. At the intersection of International Boulevard & Havenscourt Boulevard, provide protected left-turn phasing on all approaches to the intersection. Remove northbound and southbound u-turns and prohibit right turns on red. Coordinate and optimize International Boulevard cycle lengths between 66th Street and 78th Street.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>International Boulevard & Hegenberger Expressway</td>
<td>Maintain two northbound and southbound through lanes on International Boulevard between 72nd Avenue and 74th Avenue. Restripe the westbound approach to add an exclusive right-turn lane. Optimize signal timing splits and timing offsets for all signals on International Boulevard between 66th Avenue and 78th Avenue.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>International Boulevard & 98th Avenue</td>
<td>Maintain two northbound through</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Significant Effect</td>
<td>Design Feature/Mitigation</td>
<td>Q/T</td>
<td>Time Frame</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>-----</td>
<td>------------</td>
</tr>
<tr>
<td>lanes on International Boulevard from 99th Avenue to 97th Avenue and construct an additional southbound left-turn lane on International Boulevard at 98th Avenue. Optimize signal cycle length, timing splits and timing offset.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2035 W/ PROPOSED PROJECT</td>
<td>CITY OF BERKELEY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Derby Street & Waring Street</td>
<td>Proposed Mitigation: Construct new exclusive right-turn lane with yield control on westbound approach</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ashby Avenue & Shattuck Avenue</td>
<td>Proposed Mitigation: Coordinate signal with Ashby Avenue & Adeline Street and Alcatraz Avenue & Adeline Street and optimize signal cycle length, timing and splits. Requires upgrading the signal to actuated-coordinated.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ashby Avenue & College Avenue</td>
<td>Proposed Mitigation: Optimize signal timing splits.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ashby Avenue & Claremont Avenue</td>
<td>Proposed Mitigation: Optimize signal cycle length, timing splits and timing offset.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alcatraz Avenue & College Avenue</td>
<td>Proposed Mitigation: Restripe eastbound approach to add an exclusive right-turn lane. Add a new northbound left-turn lane. Coordinate signal with Claremont Avenue & College Avenue and optimize cycle length, timing splits and timing offset. This mitigation is also proposed to address 2015 intersection impacts.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alcatraz Avenue & Adeline Street</td>
<td>Proposed Mitigation: Coordinate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Significant Effect</td>
<td>Design Feature/Mitigation</td>
<td>Q/T</td>
<td>Time Frame</td>
</tr>
<tr>
<td>--------------------</td>
<td>---------------------------</td>
<td>-----</td>
<td>------------</td>
</tr>
<tr>
<td></td>
<td>signal with Ashby Avenue & Adeline Street and Ashby Avenue & Shattuck Avenue and optimize signal cycle length, timing splits and timing offset. Requires modifying phasing at Ashby Avenue & Adeline Street and upgrading signal at Ashby Avenue & Shattuck Avenue. Optimize signal timing splits and offsets. Restripe westbound approach to add an exclusive left-turn lane. Prohibit eastbound left-turns. Prohibit pedestrian crossing of Adeline Street on the south side of the intersection. Extend the northbound and southbound left-turn pockets. This mitigation is also proposed to address 2015 intersection impacts.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CITY OF OAKLAND</td>
<td>Telegraph Avenue & Alcatraz Avenue</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Proposed Mitigation: Restripe northbound approach to convert existing exclusive left-turn lane to a shared left-turn/through lane. Provide a second northbound receiving lane that extends approximately 150 feet north of the intersection. Optimize signal cycle length, timing splits and timing offset and modify intersection phasing. Remove southbound u-turn. Restripe eastbound and westbound approaches to add exclusive right-turn lanes. This mitigation is also proposed to address 2015 intersection impacts.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Claremont Avenue & 62nd Street</td>
<td>Proposed Mitigation: Construct exclusive eastbound and westbound left-turn lanes on Claremont Avenue. Re-stripe southbound approach on College Avenue to add an exclusive right-turn lane. Coordinate signal with Alcatraz Avenue & College Avenue and optimize signal cycle length, timing splits</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Significant Effect</td>
<td>Design Feature/Mitigation</td>
<td>Q/T</td>
<td>Time Frame</td>
</tr>
<tr>
<td>--------------------</td>
<td>--------------------------</td>
<td>-----</td>
<td>------------</td>
</tr>
</tbody>
</table>
| and timing offset. | **Telegraph Avenue & 56th Street**
Proposed Mitigation: Add an exclusive northbound right-turn lane. Optimize signal cycle length, timing splits and timing offset. This mitigation is also proposed to address 2015 intersection impacts. | | |
| **Telegraph Avenue & 55th Street**
Proposed Mitigation: Re-stripe eastbound approach to add an exclusive left-turn lane. Optimize signal cycle length, timing splits and timing offset. This mitigation is also proposed to address 2015 intersection impacts. | | | |
| **Martin Luther King Jr. Way & 55th Street**
Proposed Mitigation: Add new exclusive right-turn lanes on both eastbound and westbound approaches. This mitigation is also proposed to address 2015 intersection impacts. | | | |
| **Martin Luther King Jr. Way & 52nd Street**
Proposed Mitigation: Optimize signal timing splits. This mitigation is also proposed to address 2015 intersection impacts. | | | |
| **Telegraph Avenue & 51st Street**
Proposed Mitigation: Add Telegraph Avenue & 55th Street and Shattuck Avenue & 52nd Street to the coordination zone. Optimize signal cycle length, timing splits and timing offset. Construct an additional southbound left-turn lane. Eliminate the left-turn lane on the northbound approach and re-direct this movement via Shattuck Avenue & 52nd Street. Restripe northbound approach to replace the left-turn lane with a through lane and provide a second northbound receiving lane that extends approximately 80 feet north of Telegraph Avenue & Claremont Avenue. This | | |
<table>
<thead>
<tr>
<th>Significant Effect</th>
<th>Design Feature/Mitigation</th>
<th>Q/T</th>
<th>Time Frame</th>
</tr>
</thead>
<tbody>
<tr>
<td>Telegraph Avenue & 40th Street</td>
<td>Proposed Mitigation: Re-stripe eastbound approach to add an exclusive right-turn lane. Optimize signal timing splits and timing offset.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Telegraph Avenue & West MacArthur Boulevard</td>
<td>Proposed Mitigation: Restripe westbound approach to convert existing shared through/right-turn lane to an exclusive right-turn lane. Optimize signal cycle length, timing splits and timing offset. This mitigation is also proposed to address 2015 intersection impacts.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Telegraph Avenue & 27th Street</td>
<td>Proposed Mitigation: Add exclusive right-turn lanes on the eastbound, westbound, and southbound approaches. Optimize signal timing splits and timing offset.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>East 12th Street & 5th Avenue</td>
<td>Proposed Mitigation: Optimize signal cycle length, timing splits, and timing offsets and coordinate signals along East 12th Street.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>East 12th Street (SB) & 14th Avenue</td>
<td>Proposed Mitigation: Coordinate signals at East 12th Street (SB) & 14th Avenue, East 12th Street (NB) & 14th Avenue, and International Boulevard & 14th Avenue and International Boulevard & 14th Avenue with East 12th Street and International Boulevard through Eastlake. Optimize signal cycle length, timing splits, and timing offsets. This mitigation is also proposed to address 2015 intersection impacts.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>International Boulevard & 14th Avenue</td>
<td>Proposed Mitigation: Coordinate signals at East 12th Street (SB) &</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Significant Effect</td>
<td>Design Feature/Mitigation</td>
<td>Q/T</td>
<td>Time Frame</td>
</tr>
<tr>
<td>--------------------</td>
<td>---------------------------</td>
<td>-----</td>
<td>------------</td>
</tr>
<tr>
<td>14th Avenue, East 12th Street (NB) & 14th Avenue, and International Boulevard & 14th Avenue and International Boulevard & 14th Avenue with East 12th Street and International Boulevard through Eastlake. Optimize signal cycle length, timing splits, and timing offsets. International Boulevard & 29th Avenue</td>
<td>Proposed Mitigation: Coordinate signals on International Boulevard between 15th Street and 29th Street and optimize signal cycle length, timing splits, and timing offsets. This mitigation is also proposed to address 2015 intersection impacts. International Boulevard between Fruitvale Avenue and 38th Avenue</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impacts to intersections in the Fruitvale area and along International Boulevard between Fruitvale and 38th Avenue will be mitigated in part with the provision of additional capacity on parallel arterials. These improvements serve to enhance San Leandro Street as an alternative to International Boulevard and to improve traffic flow in the Fruitvale area. Proposed Mitigation: Additional turn pockets will be provided at a number of intersections along the portion of San Leandro Street between Fruitvale Avenue and 50th Avenue. In addition, turn pockets will be added at the intersection of East 12th Street and 29th Avenue. The intersections of East 10th Street/San Leandro Street with Fruitvale Avenue and Derby Avenue with East 12th Street will be reconstructed to provide additional capacity. East 10th Street and San Leandro Street will be realigned at Fruitvale Avenue to provide a through connection at the intersection. Signals will be installed at the</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Significant Effect</td>
<td>Design Feature/Mitigation</td>
<td>Q/T</td>
<td>Time Frame</td>
</tr>
<tr>
<td>--------------------</td>
<td>---------------------------</td>
<td>-----</td>
<td>------------</td>
</tr>
<tr>
<td>Derby Avenue and northbound and southbound East 12th Street. East 10th Street and Derby Avenue (west of East 12th Street) will be re-striped to improve vehicular flow. Signals on San Leandro Street from 37th Street to 50th Street will be coordinated. This mitigation is also proposed to address 2015 intersection impacts.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The proposed mitigation is projected to cause a secondary impact to level of service at the International Boulevard and Fruitvale Avenue intersection. This secondary impact is reduced to less than significant with the construction of an exclusive eastbound right turn pocket on Fruitvale Boulevard, coordination of signals on International Boulevard between 31st Street and 46th Street and optimization of signal cycle length, timing splits and timing offsets for all signals in the signal coordination zone.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>East 12th Street & Fruitvale Avenue</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proposed Mitigation: In addition to the improvements identified above for San Leandro Street, East 12th Street, and East 10th Street, restripe the eastbound approach to convert an existing through/left-turn lane to a second left-turn only lane. Restripe the northbound approach to convert an existing exclusive right-turn lane to a shared through/right-turn lane. Optimize signal cycle length, timing splits and timing offsets for all signals in the signal coordination zone. This mitigation is also proposed to address 2015 intersection impacts.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foothill Boulevard & Fruitvale Avenue</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proposed Mitigation: Optimize signal timing splits and timing offsets for coordination with the inter-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Significant Effect</td>
<td>Design Feature/Mitigation</td>
<td>Q/T</td>
<td>Time Frame</td>
</tr>
<tr>
<td>--------------------</td>
<td>---------------------------</td>
<td>-----</td>
<td>------------</td>
</tr>
</tbody>
</table>
| section of International Boulevard and Fruitvale Avenue. | **International Boulevard & 35th Street**
Proposed Mitigation: In addition to the improvements identified above for San Leandro Street, East 12th Street, and East 10th Street, coordinate signals on International Boulevard between 31st Street and 46th Street and optimize signal cycle length, timing splits and timing offsets for all signals in the signal coordination zone. | | |
| | **International Boulevard & 38th Street**
Proposed Mitigation: In addition to the improvements identified above for San Leandro Street, East 12th Street, and East 10th Street, coordinate signals on International Boulevard between 31st Street and 46th Street and optimize signal cycle length, timing splits and timing offsets for all signals in the signal coordination zone. This mitigation is also proposed to address 2015 intersection impacts. | | |
| | **International Boulevard & 42nd Avenue**
Proposed Mitigation: Maintain two northbound and two southbound through lanes on International Boulevard between 41st Avenue and 44th Avenue. Over this segment, the southbound BRT would operate in mixed flow. Optimize signal cycle length, timing splits and timing offsets for all signals in the signal coordination zone. This mitigation is also proposed to address 2015 intersection impacts. | | |
| | **International Boulevard & High Street**
Proposed Mitigation: Maintain two northbound and two southbound through lanes on International Boulevard between 41st Avenue and | | |
<table>
<thead>
<tr>
<th>Significant Effect</th>
<th>Design Feature/Mitigation</th>
<th>Q/T</th>
<th>Time Frame</th>
</tr>
</thead>
<tbody>
<tr>
<td>44th Avenue. Over this segment, the southbound BRT would operate in mixed flow. Optimize signal cycle length, timing splits and timing offsets for all signals in the signal coordination zone.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>International Boulevard & Havenscourt Boulevard</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proposed Mitigation: Maintain two northbound and two southbound through lanes on International Boulevard between 65th Avenue and 67th Avenue. Between 65th Avenue and 67th Avenue, the southbound BRT would operate in mixed flow. Between 66th Avenue and 67th Avenue, the northbound BRT would operate in mixed flow. Provide enhanced pedestrian crossings and intersection controls at International Boulevard and 65th Avenue and International Boulevard and 67th Avenue where buses transition to and from dedicated lanes. At the intersection of International Boulevard & Havenscourt Boulevard, provide protected left-turn phasing on all approaches. Remove northbound and southbound u-turns and prohibit right turns on red. Coordinate and optimize International Boulevard cycle lengths between 66th Street and 78th Street. This mitigation is also proposed to address 2015 intersection impacts.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>International Boulevard & Hegenberger Expressway</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proposed Mitigation: Maintain two northbound and southbound through lanes on International Boulevard between 72nd Avenue and 74th Avenue. Restripe the westbound approach to add an exclusive right-turn lane. Optimize signal timing splits and timing offsets for all signals on International Boulevard between 66th Avenue and 78th Avenue. This mitigation is also proposed to address 2015 intersec-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Significant Effect</td>
<td>Design Feature/Mitigation</td>
<td>Q/T</td>
<td>Time Frame</td>
</tr>
<tr>
<td>--------------------</td>
<td>---------------------------</td>
<td>-----</td>
<td>------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>San Leandro Boulevard & 98th Avenue</td>
<td>Proposed Mitigation: Optimize signal timing splits and timing offset.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>International Boulevard & 98th Avenue</td>
<td>Proposed Mitigation: Maintain two northbound through lanes on International Boulevard from 99th Avenue to 97th Avenue and construct an additional southbound left-turn lane on International Boulevard at 98th Avenue. Optimize signal cycle length, timing splits and timing offset. This mitigation is also proposed to address 2015 intersection impacts.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CITY OF SAN LEANDRO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>San Leandro Boulevard & West Broadmoor Boulevard</td>
<td>Proposed Mitigation: Re-construct the westbound right-turn from West Broadmoor Boulevard as a channelized right-turn with an acceleration lane on San Leandro Boulevard.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bancroft Avenue & Dutton Avenue</td>
<td>Proposed Mitigation: Optimize signal timing splits and timing offset.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Davis Street & San Leandro Boulevard</td>
<td>Proposed Mitigation: Restripe the northbound approach to add an exclusive right-turn lane. Optimize signal cycle length, timing splits and timing offset.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2035 W/DOSL ALTERNATIVE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The DOSL Alternative does not result in significant vehicular impacts at intersections north of downtown Oakland. Therefore, the mitigation measures identified at those intersections as associated with the proposed project would</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Significant Effect</td>
<td>Design Feature/Mitigation</td>
<td>Q/T</td>
<td>Time Frame</td>
</tr>
<tr>
<td>--------------------</td>
<td>---</td>
<td>-----</td>
<td>------------</td>
</tr>
<tr>
<td>not be required. The required mitigation measures from downtown Oakland to San Leandro are identical to those identified under the proposed project. To further clarify, the following mitigation measures are proposed with the DOSL Alternative to partially or fully mitigate significant vehicular impacts at 18 locations:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>East 12th Street & 5th Avenue Optimize signal cycle length, timing splits, and timing offsets and coordinate signals along East 12th Street.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>East 12th Street (SB) & 14th Avenue Coordinate signals at East 12th Street (SB) & 14th Avenue, East 12th Street (NB) & 14th Avenue, and International Boulevard & 14th Avenue and International Boulevard & 14th Avenue with East 12th Street and International Boulevard through Eastlake. Optimize signal cycle length, timing splits, and timing offsets.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>International Boulevard & 14th Avenue Coordinate signals at East 12th Street (SB) & 14th Avenue, East 12th Street (NB) & 14th Avenue, and International Boulevard & 14th Avenue and International Boulevard & 14th Avenue with East 12th Street and International Boulevard through Eastlake. Optimize signal cycle length, timing splits, and timing offsets.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>International Boulevard & 29th Avenue Coordinate signals on International Boulevard between 15th Street and 29th Street and optimize signal cycle length, timing splits, and timing offsets.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>International Boulevard between</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Significant Effect</td>
<td>Design Feature/Mitigation</td>
<td>Q/T</td>
<td>Time Frame</td>
</tr>
<tr>
<td>--------------------</td>
<td>---------------------------</td>
<td>-----</td>
<td>------------</td>
</tr>
<tr>
<td>Fruitvale Avenue and 38th Avenue</td>
<td>Impacts to intersections in the Fruitvale area and along International Boulevard between Fruitvale and 38th Avenue will be mitigated in part with the provision of additional capacity on parallel arterials. These improvements serve to enhance San Leandro Street as an alternative to International Boulevard and to improve traffic flow in the Fruitvale area. Additional turn pockets will be provided at a number of intersections along the portion of San Leandro Street between Fruitvale Avenue and 50th Avenue. In addition, turn pockets will be added at the intersection of East 12th Street and 29th Avenue. The intersections of East 10th Street/San Leandro Street with Fruitvale Avenue and Derby Avenue with East 12th Street will be re-constructed to provide additional capacity. East 10th Street and San Leandro Street will be realigned at Fruitvale Avenue to provide a through connection at the intersection. Signals will be installed at the closely spaced intersections of Derby Avenue and northbound and southbound East 12th Street. East 10th Street and Derby Avenue (west of East 12th Street) will be re-striped to improve vehicular flow. Signals on San Leandro Street from 37th Street to 50th Street will be coordinated.</td>
<td>Q/T</td>
<td>Time Frame</td>
</tr>
<tr>
<td>East 12th Street & Fruitvale Avenue:</td>
<td>In addition to the improvements identified above for San Leandro Street, East 12th Street, and East 10th Street, restrripe the eastbound approach to convert an existing through/left-turn lane to a second left-turn only lane. Restripe the northbound approach to convert an existing exclusive left-turn lane to a</td>
<td>Q/T</td>
<td>Time Frame</td>
</tr>
<tr>
<td>Significant Effect</td>
<td>Design Feature/Mitigation</td>
<td>Q/T</td>
<td>Time Frame</td>
</tr>
<tr>
<td>--------------------</td>
<td>---------------------------</td>
<td>-----</td>
<td>------------</td>
</tr>
</tbody>
</table>
| Through lane. Optimize signal cycle length, timing splits and timing offsets for all signals in the signal coordination zone. | **Foothill Boulevard & Fruitvale Avenue:** Optimize signal timing splits and timing offsets for coordination with the intersection of International Boulevard and Fruitvale Avenue.
International Boulevard & 35th Street: In addition to the improvements identified above for San Leandro Street, East 12th Street, and East 10th Street, coordinate signals on International Boulevard between 31st Street and 46th Street and optimize signal cycle length, timing splits and timing offsets for all signals in the signal coordination zone.
International Boulevard & 38th Street: In addition to the improvements identified above for San Leandro Street, East 12th Street, and East 10th Street, coordinate signals on International Boulevard between 31st Street and 46th Street and optimize signal cycle length, timing splits and timing offsets for all signals in the signal coordination zone.
International Boulevard & 42nd Avenue: Maintain two northbound and two southbound through lanes on International Boulevard between 41st Avenue and 44th Avenue. Over this segment, the southbound BRT would operate in mixed flow. Optimize signal cycle length, timing splits and timing offsets for all signals in the signal coordination zone.
International Boulevard & High Street: | | | |
<table>
<thead>
<tr>
<th>Significant Effect</th>
<th>Design Feature/Mitigation</th>
<th>Q/T</th>
<th>Time Frame</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maintain two northbound and two southbound through lanes on International Boulevard between 41<sup>th</sup> Avenue and 44<sup>th</sup> Avenue. Over this segment, the southbound BRT would operate in mixed flow. Optimize signal cycle length, timing splits and timing offsets for all signals in the signal coordination zone.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>International Boulevard & Havenscourt Boulevard:</td>
<td>Maintain two northbound and two southbound through lanes on International Boulevard between 65<sup>th</sup> Avenue and 67<sup>th</sup> Avenue. Between 65<sup>th</sup> Avenue and 67<sup>th</sup> Avenue, the southbound BRT would operate in mixed flow. Between 66<sup>th</sup> Avenue and 67<sup>th</sup> Avenue, the northbound BRT would operate in mixed flow. Provide enhanced pedestrian crossings and intersection controls at International Boulevard and 65<sup>th</sup> Avenue and International Boulevard and 67<sup>th</sup> Avenue where buses transition to and from dedicated lanes. At the intersection of International Boulevard & Havenscourt Boulevard, provide protected left-turn phasing on all approaches. Remove northbound and southbound u-turns and prohibit right turns on red. Coordinate and optimize International Boulevard cycle lengths between 66<sup>th</sup> Street and 78<sup>th</sup> Street.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>International Boulevard & Hegenberger Expressway:</td>
<td>Maintain two northbound and southbound through lanes on International Boulevard between 72<sup>nd</sup> Avenue and 74<sup>th</sup> Avenue. Restripe the westbound approach to add an exclusive right-turn lane. Optimize signal timing splits and timing offsets for all signals on International Boulevard between 66<sup>th</sup> Avenue and 78<sup>th</sup> Avenue.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Significant Effect</td>
<td>Design Feature/Mitigation</td>
<td>Q/T</td>
<td>Time Frame</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>-----</td>
<td>------------</td>
</tr>
<tr>
<td>International Boulevard & 98th Avenue:</td>
<td>Maintain two northbound through lanes on International Boulevard from 99th Avenue to 97th Avenue and construct an additional southbound left-turn lane on International Boulevard at 98th Avenue. Optimize signal cycle length, timing splits and timing offset.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>San Leandro Boulevard & West Broadmoor Boulevard:</td>
<td>Re-construct the westbound right-turn from West Broadmoor Boulevard as a channelized right turn with an acceleration lane.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>San Leandro Street & 98th Avenue:</td>
<td>Optimize signal timing splits and timing offset.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bancroft Avenue & Dutton Avenue:</td>
<td>Optimize signal timing splits and timing offset.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Davis Street & San Leandro Boulevard:</td>
<td>Restripe the northbound approach to add an exclusive right-turn lane. Optimize signal cycle length, timing splits and timing offset.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The AC Transit Board of Directors, when certifying the Final Environmental Impact Report and adopting the required findings, may modify proposed mitigation measures. In doing so, the Board will also create a need to modify the Mitigation Monitoring and Reporting Program to reflect the changes.
Final EIS/EIR Comment Summary

This document provides a summary of public comments received during the Final EIS/EIR review period, which began February 3, 2012 and officially ended on March 19, 2012. To notify the public about the availability of the Final EIS/EIR and community meetings, the following techniques were used:

- advertising in local journals and newspapers and project information at libraries in the corridor
- notices on buses
- emails to Oakland and San Leandro Councils, homeowner association leaders, Chambers of Commerce and business associations
- phone calls to key stakeholders
- meeting alerts via email
- meeting notices to DEIR/EIS commenters
- websites notices

Seven community meetings were held in the corridor starting on February 23 and concluding on March 12, 2012. At each of the meetings, there were 30 minutes allotted for attendees to view project materials, an approximately 30-minute overview presentation by AC Transit, and then one hour where attendees could discuss questions with the project team.

Agendas, comment sheets and a project fact sheet were provided to attendees. Translation services were requested and provided at three of the meetings. Comment cards were collected at the meetings, and attendees were reminded they could submit comments until March 19, 2012.

Dates, times and locations of the community meetings, along with the approximate number of attendees and comments received at each meeting, are noted below:

<table>
<thead>
<tr>
<th>Meeting Location</th>
<th>Meeting Date/Time</th>
<th>Estimated Number of Attendees</th>
<th>Number of Comment Cards Submitted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fruitvale-San Antonio Senior Center 3301 E. 12th Street, Suite 201 Oakland, CA 94601 (Spanish interpreter provided)</td>
<td>February 23, 2012 6:00 - 8:00 pm</td>
<td>21</td>
<td>3</td>
</tr>
<tr>
<td>Eastside Arts Alliance 2277 International Boulevard Oakland, CA 94606 (Spanish and Vietnamese interpreters provided)</td>
<td>February 27, 2012 6:00 - 8:00 pm</td>
<td>23</td>
<td>6</td>
</tr>
<tr>
<td>Havenscourt Campus 1390 66th Avenue, Auditorium Oakland, CA 94621</td>
<td>February 29, 2012 6:00 - 8:00 pm</td>
<td>12</td>
<td>5</td>
</tr>
<tr>
<td>San Leandro City Hall 835 East 14th Street, South Offices San Leandro, CA 94577</td>
<td>March 1, 2012 6:00 - 8:00 pm</td>
<td>66</td>
<td>11</td>
</tr>
<tr>
<td>Oakland City Hall 1 Frank Ogawa Plaza, Hearing Room 3 Oakland, CA 94612 (Cantonese and Vietnamese interpreters provided)</td>
<td>March 5, 2012 6:00 - 8:00 pm</td>
<td>39</td>
<td>10</td>
</tr>
<tr>
<td>Faith Presbyterian Church 430 49th Street, Sanctuary Oakland, CA 94609</td>
<td>March 7, 2012 6:00 - 8:00 pm</td>
<td>62</td>
<td>14</td>
</tr>
<tr>
<td>Meeting Location</td>
<td>Meeting Date/Time</td>
<td>Estimated Number of Attendees</td>
<td>Number of Comment Cards Submitted</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>-------------------------</td>
<td>------------------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>Allen Temple Arms</td>
<td>March 12, 2012</td>
<td>91</td>
<td>3</td>
</tr>
<tr>
<td>8135 International Boulevard, Multipurpose Room Oakland, CA 94621</td>
<td>6:00 - 8:00 pm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total: 314</td>
<td>Total: 52</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Community Meeting Comments

Major themes expressed by the community largely dealt with the trade-offs associated with how BRT achieves greater speed and reliability – namely the use of dedicated lanes, which requires allocating portions of the roadway to transit previously allocated to mixed-flow traffic (transit and private cars) and parking. Feedback at the community meetings was mixed, generally either extremely supportive of whatever would provide the greatest benefit to transit riders or concerned about impacts to automobile drivers, parking along the corridor (particularly in front of small businesses), and the distance between stops.

Comments Submitted Outside of Meetings

Ninety-three comments were submitted via mail, email or facsimile. Of the comment letters submitted, seven letters were received after March 19, 2012. Commenters included federal, regional and local agencies, local interest groups, businesses, and citizens.

Within the 145 comment letters/documents submitted (from meetings and via mail, email and facsimile), there were 465 separate comments. The common topics presented in comment letters and the numbers of comments associated with each topic are listed in the table on the following page.
<table>
<thead>
<tr>
<th>Common Topic</th>
<th>Number of Comments</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mitigation</td>
<td>87</td>
<td>Comments related to mitigation issues included the following general areas: concern that mitigation plans are not sufficient; parking mitigation; mitigation to address traffic diversion; BRT infrastructure maintenance; mitigation for landscaping and beautification; and equitable service.</td>
</tr>
<tr>
<td>Support Project Benefits</td>
<td>47</td>
<td>Comments supported the benefits of the project, including reducing vehicle miles traveled; reducing emissions; benefiting ethnic and minority populations; reducing crime; and providing affordable transportation options. A few commenters suggested the benefits outweighed any mitigation needed.</td>
</tr>
<tr>
<td>Support of Locally Preferred Alternative (LPA)</td>
<td>44</td>
<td>Comments supported the route and design planned for the LPA. One commenter was specifically against the DOSL but supportive of the LPA.</td>
</tr>
<tr>
<td>Station Location/ Design/ Safety</td>
<td>34</td>
<td>Comments related to station location preferences (distance between stops and safety); technology and security improvements in bus shelters; the safety of pre-boarding fare collection; and the safety of pedestrian island designs. One commenter suggested the planned security measures were sufficient.</td>
</tr>
<tr>
<td>Funding/Cost</td>
<td>26</td>
<td>Comments related to the sources of funding, suggesting the project costs too much or that full funding is needed. One commenter felt the cost was necessary.</td>
</tr>
<tr>
<td>Bicycle / Pedestrian</td>
<td>22</td>
<td>Comments related to the placement of bicycle lanes and bike placement on buses. One commenter expressed concern with pedestrian safety in the corridor.</td>
</tr>
<tr>
<td>Coordination</td>
<td>15</td>
<td>Comments related to decision-making structure and coordination with cities.</td>
</tr>
<tr>
<td>Decision Making</td>
<td>14</td>
<td>Comments related to concerns that the Final EIS/EIR did not study the commenters' preferred options or that their comments/concerns were not addressed by the LPA. Two commenters preferred curbside BRT.</td>
</tr>
<tr>
<td>Economic/Business Impact</td>
<td>13</td>
<td>Comments related to job creation (2) and job loss (2), and suggestions that local businesses provide incentives for BRT users (2). The others pertained to the negative effects on a sensitive business/community balance in the area. (Note: Approximately 20 comments related to mitigation of businesses/parking impacts.)</td>
</tr>
<tr>
<td>Project Need</td>
<td>13</td>
<td>Comments suggested the project was not necessary and/or would not accomplish project goals. Some commenters proposed improving the current system instead.</td>
</tr>
<tr>
<td>Data Assumptions</td>
<td>12</td>
<td>Comments questioned the accuracy of data/models to support project need.</td>
</tr>
<tr>
<td>Public Outreach</td>
<td>12</td>
<td>Comments expressed concern regarding public meeting format, information presented, and general outreach process.</td>
</tr>
<tr>
<td>Peralta School</td>
<td>12</td>
<td>Comments related to impacts at Peralta School in North Oakland.</td>
</tr>
<tr>
<td>AC Transit Management</td>
<td>12</td>
<td>Comments related to AC Transit’s management: bus operators, management history, maintaining schedules, cleanliness of stations, and supervision of planned stations.</td>
</tr>
<tr>
<td>Fares/Fare Collection</td>
<td>11</td>
<td>Comments related to the need to collect fares faster, concerns over fare increases, and how pre-boarding fare collection works when transferring. One commenter suggested fares should be lower due to the BRT.</td>
</tr>
<tr>
<td>Common Topic</td>
<td>Number of Comments</td>
<td>Description</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>--------------------</td>
<td>---</td>
</tr>
<tr>
<td>Colby Park and Canning Street Signal</td>
<td>10</td>
<td>Comments related to concerns about traffic proximate to the Colby Park area in North Oakland.</td>
</tr>
<tr>
<td>Traffic</td>
<td>9</td>
<td>Comments related to delivery truck impacts and traffic congestion. One commenter questioned the reported off-alignment traffic impacts in Berkeley. (Note: Approximately 20 comments about environmental mitigation referenced traffic among other project impacts.)</td>
</tr>
<tr>
<td>Format Correction</td>
<td>9</td>
<td>Comments related to typos, clarifying issues in the Final EIS/EIR, and preference for more visualizations in the document.</td>
</tr>
<tr>
<td>Dedicated Lane</td>
<td>8</td>
<td>Comments related to dedicated lanes: preference to do without (3) and questioning the absolute need for (2). One related to the conditions necessary or desired for including dedicated lanes in a segment. (Note: Approximately 30 comments involved in some form mitigation due to dedicated lanes/route design.)</td>
</tr>
<tr>
<td>Bus Design</td>
<td>8</td>
<td>Comments related to the design or modification of buses. Two comments related to Clipper card readers in buses.</td>
</tr>
<tr>
<td>Route Design</td>
<td>8</td>
<td>Comments related to preferences in changing the route design. One commenter supported the DOSL but wanted it changed slightly.</td>
</tr>
<tr>
<td>DOSL Support</td>
<td>7</td>
<td>Comments related to support for the DOSL. (Note: One comment letter listed multiple reasons why the DOSL was preferable—counted as one.) One commenter was exclusively for the DOSL (no other option) while one supported the DOSL with adjustments (no dedicated lanes; prepaid fares; signal priority; raised curb stops; shelters with amenities).</td>
</tr>
<tr>
<td>Information request</td>
<td>6</td>
<td>Comments related to specific requests for information (e.g., about meeting materials, project consultants/partners, how comments are used).</td>
</tr>
<tr>
<td>Ridership</td>
<td>5</td>
<td>Comments related to additional motivation needed for the public to not drive but use transit. One commenter provided independently collected ridership information.</td>
</tr>
<tr>
<td>Merit to San Leandro</td>
<td>5</td>
<td>Comments related to the project’s lack of benefits to San Leandro.</td>
</tr>
<tr>
<td>BART vs. BRT</td>
<td>5</td>
<td>Comments suggested BRT duplicates service provided by BART.</td>
</tr>
<tr>
<td>ADA/Senior Accessibility</td>
<td>4</td>
<td>Comments related to accessibility issues for ADA and elderly individuals. Two comments pertained to curbside boarding.</td>
</tr>
<tr>
<td>Website Issue/ Mailing List Request</td>
<td>4</td>
<td>Comments related to links not working on the website or requests to be added to mailing lists.</td>
</tr>
<tr>
<td>Mitigation Requirement</td>
<td>3</td>
<td>Comments related to mitigation requirements from State officials. These comments were specific to documentation that was required.</td>
</tr>
<tr>
<td>Total: 465</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
EAST BAY BUS RAPID TRANSIT PROJECT
FINAL ENVIRONMENTAL IMPACT STATEMENT/REPORT

WELCOME

COMMUNITY MEETINGS
FEBRUARY-MARCH 2012
SLOW TRANSIT AFFECTS EVERYONE

Slow, unreliable service makes the bus an unattractive option, and riders who have a choice may choose to travel by car.

By 2035, without any capacity increases, traffic along the corridor will face heavy congestion.

Running more buses under stop-and-go traffic conditions reduces reliability, adds to bus wear, increasing service and maintenance requirements, staffing needs, and costs.

By 2035...

MORE TRAFFIC

MORE RIDERS SWITCH TO CARS

MORE BUS DELAYS AND RIDER FRUSTRATION

MORE BUSES STUCK IN TRAFFIC

Large numbers of bus passengers and steadily worsening traffic conditions cause buses to be slow and unreliable.

Buses traveling in mixed-flow traffic experience delays in getting to and from the curbside stations and from heavy cross traffic at intersections.

THE EAST BAY BRT PROJECT WOULD RESPOND TO THE FOLLOWING TRANSPORTATION NEEDS

- Improve transit schedule reliability and reduce transit travel times.
- Improve transit service efficiency by reducing AC Transit's operating cost per rider.
- Enhance accessibility by public transit to jobs and corridor activity centers by expanding transit capacity and making transit more competitive with the automobile.
- Improve boarding and alighting of buses and make transit more convenient for passengers with disabilities or other mobility restrictions.
- Expand travel options and reduce reliance on automobile travel.
- Support transit-oriented residential and commercial development of the project corridor.
- Better serve low-income and transit-dependent populations.
Options to improve bus travel times and reliability are limited

Declining Average Bus Speed

18% decline in average bus speeds over 15 years means higher operating costs and slower transit travel times for riders.

- Expanding the road for more cars would impact numerous residences and businesses.
- Adding more buses would just add to congestion and result in higher operating cost, including fuel costs.

BRT reverses this trend. Average bus speed on the corridor expected to increase by approximately 25–30%.

Our roadways are designed to move people and goods. As more people live and work here, our roads become congested and people spend unproductive time in traffic or waiting for the bus. As we plan for the future, it is important to consider moving more cars isn’t the goal – it’s moving more people.
There are two alternatives evaluated in the FEIS/EIR:
The Locally Preferred Alternative (LPA) was developed in coordination with the stakeholder cities and communities.

The East Bay BRT Project will provide service along a 14.38 mile corridor from Berkeley to the San Leandro BART station, in a combination of mixed-flow and dedicated BRT lanes.

Buses will come every 5 minutes during peak and midday periods, 10 minute headways in the evening.

Estimated project cost of $205.1 million

47 stations proposed along BRT corridor
Six stations in Berkeley, 36 stations in Oakland, and five stations in San Leandro
31 of 47 BRT stations are located at or near existing 1R Rapid Bus Stops
DOWNTOWN OAKLAND – SAN LEANDRO ALTERNATIVE (DOSL)

There are two alternatives evaluated in the FEIS/EIR:

Based on community input and City direction, and at the direction of the AC Transit Board, an additional, less costly alternative (referred to as the DOSL) has been included for evaluation in the Final EIS/EIR.

Under the DOSL Alternative, there are no dedicated BRT lanes or stations north of the 20th Street (Uptown) Station in downtown Oakland.

The DOSL Alternative has two bus routes. One bus route operates between downtown Berkeley and downtown Oakland. Another operates between downtown Oakland and San Leandro BART.

KEY DIFFERENCES:

- Fewer stations than LPA (32 instead of 47)
- Shorter length than LPA (9.52 miles instead of 14.38)
- No BRT associated impacts north of 20th Street
- Estimated project cost of $152.3 million

South of the Uptown Station in downtown Oakland, the DOSL Alternative will implement all BRT project features.
FASTER, MORE RELIABLE SERVICE

- Real-time arrival sign provides reliable information for riders
- Off-bus fare payment eliminates hassles and delays at farebox
- Transit stations would facilitate ease of entry and exit by minimizing the distance between the platform and the vehicle
- The proposed BRT service would use dedicated bus lanes to take buses out of traffic congestion, improve schedule reliability, and speed up passenger trips
- More efficiently spaced station stops, pre-paid ticketing, and low-floor boarding would decrease the time buses spend idle at bus stops

BRT Systems in Other Communities

Las Vegas, Nevada
- MAX increased ridership in transit corridor by 25 percent
- 30% of new riders are new to transit
IMPROVED SAFETY, SECURITY AND COMFORT

All stations will be built using crime prevention through environmental design (CPED) principles

BRT stations will improve passenger safety with better visibility, well-designed lighting, emergency phones and security cameras

By adding new traffic signals and coordinating all signals, traffic speeds can be reduced to appropriate levels, reducing the frequency and severity of accidents

Pedestrian “islands” to provide additional time to cross and more protection from traffic

Pedestrian access and safety improvements. Passenger information kiosks and spacious canopy shelters

BRT Systems in Other Communities

Eugene, Oregon
- Emerald Express (EmX) ridership doubled in first 9 months
- 30% of new riders are new to transit
- Ridership already reached 20 year projection in 1st year of service
OTHER IMPROVEMENTS

- **Healthier Businesses**: More transit riders means more foot traffic and more vibrant streets
- **Pedestrian Safety**: High-visibility crosswalks and new pedestrian signals make walking safer
- **Safer Bicycling**: New bike lanes installed in accordance with local plans
- **Greener Streets**: Recycled pavement and drought-tolerant landscaped medians reduce energy and water use
- **Smother Driving**: AC Transit would repave substandard roadway from curb to curb
- **Streetscape Features**: Improved, restriped crosswalks and raised, “curb separated” islands will create pedestrian protected crossings. ADA ramps and bulbouts will assist pedestrian movement to and from crosswalks serving BRT stations

BRT Systems in Other Communities

Los Angeles, California
- **Orange Line**: meet 20-year ridership projections in first 7 months
 - 17% of new riders are new to transit
EAST BAY BUS RAPID TRANSIT

BEFORE AND AFTER

Telegraph Ave. at Hawthorne Road BRT Station

Existing

Telegraph Ave. @ Hawthorne - Oakland Looking South

Proposed Future

Telegraph Ave. @ Hawthorne - Oakland Looking South

11th Street & Harrison Street BRT Station

Existing

11th St. @ Harrison Street - Oakland

Proposed Future

11th St. @ Harrison Street - Oakland - Canopy Option C

International Blvd. at 34th Avenue BRT Station

Existing

International Boulevard @ 34th Street - Oakland - Looking Southwest

Proposed Future

International Boulevard @ 34th Street - Oakland - Looking Southwest

Legend
- BRT Corridor
- Route of Proposed BRT System
- Freeways
- Major Streets
<table>
<thead>
<tr>
<th>KEY COMMUNITY ISSUES</th>
<th>KEY CHANGES SINCE 2007</th>
<th>REASON FOR CHANGE & FINDINGS</th>
</tr>
</thead>
</table>
| Distance between bus stops is too far | - Increase from 44 to 47 BRT stations
- Adjust BRT station locations to better serve riders (typically move station one block or less) | - AC Transit has worked to limit the distance riders must travel to reach a station. Station locations were selected with the following in mind:
 - Locations with high bus rider on-and-off activity
 - Convenience for transfers
 - Physical constraints and opportunities
 - Operational and safety considerations
 - Public and local agency comments, among other factors |
| Project causes traffic & congestion | - Additional intersection and roadway improvements to improve level of service and traffic flow
- Development of DOSL alternative | - Improvements address BRT impacts on roadway operations
- New signal coordination will provide a greater level of control over to the cities
- The DOSL alternative does not include dedicated lanes in North Oakland/Temescal area |
| Parking is removed | - Identify suitable parking nearby
- Inclusion of dual-door buses
- Median stations
- New managed parking
- DOSL alternative
- Create new off-street parking lots | - Use of central median stations and buses with doors on both sides reduces parking loss where parking is most needed
- DOSL alternative has no parking impacts north of downtown Oakland |
KEY COMMUNITY ISSUES

<table>
<thead>
<tr>
<th>Impact or loss of landscaped medians</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left turn restrictions are inconvenient</td>
</tr>
</tbody>
</table>

KEY CHANGES SINCE 2007

- New landscaped medians added as part of project
- Identify ways to incorporate existing median into design
- Dual-door buses will significantly reduce median impacts
- Where some median removal is needed, additional design work will enhance or expand what remains
- Left turn pockets and left turn signals installed at traffic signals
- 28 new signalized intersections and turn signals to maintain neighborhood access

REASON FOR CHANGE & FINDINGS

- Dual-door buses require less space and reduce impacts
- Project will build new medians in many locations
- Left turn restrictions lead to safer roadways - even UPS has implemented a “no left turn across traffic” policy
- Calms flow of traffic reducing frequency and severity of crashes and injuries
- With BRT and dedicated lanes, there is an 88% reduction in potential traffic conflict points
Key Community Issues

<table>
<thead>
<tr>
<th>Key Community Issues</th>
<th>Project Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction impacts the neighborhood</td>
<td>AC Transit will employ many measures to address community concerns about construction:</td>
</tr>
<tr>
<td></td>
<td>• Keep road open during construction</td>
</tr>
<tr>
<td></td>
<td>• Maintain access to residents and business</td>
</tr>
<tr>
<td></td>
<td>• Cooperate with cities to develop traffic management plans for safe access</td>
</tr>
<tr>
<td></td>
<td>• Minimize roadway closures</td>
</tr>
<tr>
<td></td>
<td>• Public outreach to residents and businesses in construction areas</td>
</tr>
<tr>
<td></td>
<td>• Information available on project status website</td>
</tr>
<tr>
<td></td>
<td>• Establish property owner database of individuals and agencies to contact regarding construction impacts</td>
</tr>
<tr>
<td></td>
<td>• Signage in construction zones identifying travel routes and times of construction activity</td>
</tr>
<tr>
<td>Cars will be diverted onto neighborhood streets</td>
<td>AC Transit will fund a neighborhood traffic management program to evaluate, monitor, and mitigate adverse impacts to neighborhood streets</td>
</tr>
<tr>
<td></td>
<td>• Traffic monitoring programs will be developed together with respective cities</td>
</tr>
<tr>
<td></td>
<td>• AC Transit will pay for planning, design, and installation of devices to either reduce traffic volumes or reduce speeds on local streets should they be adversely affected by the BRT Project</td>
</tr>
</tbody>
</table>
PARKING

Parking is an important community concern, and AC Transit recognizes this fact and has been sensitive to neighborhood needs. As different neighborhoods have different parking patterns and needs, the project has evaluated current parking conditions, including occupancy rate and prevalence of parking in the area.

Level of Parking Impact and Approach to Mitigation

There are three tiers of parking mitigation depending on the peak usage and the availability of nearby parking.

Tier 1 - No parking impact
- Where parking occupancy rates (or parking demand) do not exceed 85%.
- No mitigation needed.

Tier 2 - Modest parking impact
- Where parking occupancy approaches 85%, mitigation may be needed.
- Tier 2 impacts typically occur only in business and commercial areas.
- Parking mitigation consists of managing parking by converting all-day parking spaces adjacent to commercial buildings into spaces with time restrictions to serve local business customers.

Tier 3 - Large parking impact
- Where parking occupancy exceeds 85%, and opportunities to manage parking are limited or there are special parking needs, mitigation may also include developing new community parking lots.
- Examples of proposed new parking lots AC Transit might develop are identified in the FEIS/R.

Examples of Proposed New Parking Lots
BRT'S CORRIDOR BENEFITS & TRADE-OFFS

<table>
<thead>
<tr>
<th>TRANSPORTATION BENEFITS</th>
<th>LPA</th>
<th>DOSL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transit Speed</td>
<td>Increase in peak period by 25-30%</td>
<td>Increase in peak period by 25-30%</td>
</tr>
<tr>
<td>Transit Ridership</td>
<td>Increase by 17,100 (70%)</td>
<td>Increase by 11,400 (45%)</td>
</tr>
<tr>
<td>Transit Net Operating Cost</td>
<td>Decrease by $0.92 per passenger boarding</td>
<td>Decrease by $0.76 per passenger boarding</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ENVIRONMENTAL BENEFITS</th>
<th>LPA</th>
<th>DOSL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auto Vehicle Miles of Travel (VMT)</td>
<td>Decrease by 11,300 miles per day</td>
<td>Decrease by 8,000 miles per day</td>
</tr>
<tr>
<td>Greenhouse Gases (GHG)</td>
<td>Decrease by 1,900 lbs CO₂e per day</td>
<td>Decrease by 4,100 lbs CO₂e per day</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IMPACTS</th>
<th>LPA</th>
<th>DOSL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parking</td>
<td>Displace 1,013 spaces, no shortage with parking mitigation plan</td>
<td>Displace 555 spaces, no shortage with parking mitigation plan</td>
</tr>
<tr>
<td>Auto Speed</td>
<td>Decrease in peak period by 18-23%</td>
<td>Decrease in peak period by 18-23%</td>
</tr>
</tbody>
</table>

Note: All numbers are for Opening year (2016)
ENVIRONMENTAL JUSTICE

BRT will Better Serve Low-Income and Transit-Dependent Populations in the Project Corridor

- The proposed project corridor is primarily an inner city route that serves densely populated neighborhoods.

- About 40% of the total population and over half of the total employment population in Berkeley, Oakland, and San Leandro lies within the corridor – 23% of the households in the corridor do not have a car.

- Reduced accessibility to jobs and other activities limits individual opportunities.

- By improving access to important employment and educational centers in the East Bay, the BRT project will improve access to employment, education and shopping.

Low Income Population in BRT Corridor

22% of the corridor population is low income.

Minority Population in BRT Corridor

Ethnic minorities make up almost 76% of the population along the corridor.

Transit Dependent Population in BRT Corridor

In some areas, such as in central Oakland, 49% of households do not have a car.

Source: U.S. Census Bureau, 2000
COMMUNITY INVESTMENT & ECONOMIC DEVELOPMENT

Community Investment

- $75 million in Federal funds available, if unused will be spent elsewhere
- Approximately 300 construction jobs over three years during construction
- Investment in local infrastructure has a jobs multiplier effect
- Approximately 400 ancillary retail, service and manufacturing jobs during construction
- Faster, more reliable transit can be a catalyst for new economic investment

$205.1 Million in BRT Funding Sources

<table>
<thead>
<tr>
<th>Source</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>FTA Small Starts</td>
<td>37%</td>
</tr>
<tr>
<td>FTA Bus</td>
<td>19%</td>
</tr>
<tr>
<td>Regional Measure 2</td>
<td>16%</td>
</tr>
<tr>
<td>Alameda County Measure B</td>
<td>19%</td>
</tr>
<tr>
<td>Alameda STIP</td>
<td>2%</td>
</tr>
<tr>
<td>AC Transit Bus Program</td>
<td>2%</td>
</tr>
<tr>
<td>Other</td>
<td>3%</td>
</tr>
</tbody>
</table>

Economic Development

The BRT Project would support local and regional planning goals to organize development along transit corridors and around transit stations. **BRT systems in other countries and other U.S. cities have increased ridership and fostered economic development.**

- The Euclid Corridor Transportation Project, is a 9.4-mile BRT line, is a key initiative to revitalize Cleveland's urban core.
- Ridership has increased 60% in 3 years.
- The BRT system provides a rapid connection between the region's two largest employment centers – the central business district and the University Circle area.
- Over $4.3 billion in economic investments have occurred or are planned along this corridor.

BRT was first implemented in Brazil and has expanded internationally:
- Johannesburg, South Africa
- Curitiba, Brazil
- Bogota, Colombia
- Paris, France
- Beijing, China

BRT systems are being developed locally:
- Van Ness BRT, San Francisco
- Geary BRT, San Francisco
- Alum Rock, Santa Clara County
- El Camino Real, Santa Clara County
HOW TO STAY INVOLVED

Should you wish to comment on the FEIS/R, please do so no later than 5:00 p.m., March 19, 2012, through any of the means noted below. All comments will be made part of the public record.

Email: Planning@actransit.org

Mail: East Bay BRT Project Office
 AC Transit
 1600 Franklin Street, 7th Floor
 Oakland, CA 94612

STAY INVOLVED

Call: 510-891-7175

Visit: http://www.actransit.org/planning-focus/your-guide-to-bus-rapid-transit/

Attend: Community meetings held in February and March 2012. Meeting announcement includes locations, dates and times.
BRT Planning Process & Next Steps

<table>
<thead>
<tr>
<th>Year Range</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2002</td>
<td>Major Investment Study</td>
</tr>
<tr>
<td>2003-2007</td>
<td>Draft Environmental Study (DEIS/DEIR) – 4 Alternatives Studied</td>
</tr>
<tr>
<td>2008-2011</td>
<td>Identify and Refine Locally Preferred Alternative (LPA)</td>
</tr>
<tr>
<td>2012</td>
<td>Final Environmental Study – (FEIS/FEIR)*</td>
</tr>
<tr>
<td>2012-2014</td>
<td>Detailed Design</td>
</tr>
<tr>
<td>2014-2016</td>
<td>Construction</td>
</tr>
</tbody>
</table>

2014-2016 Construction

Full BRT Service Begins in 2016

2012-2014 Detailed Design

- During final detailed design, AC Transit will work with the Cities and community members in Oakland and San Leandro to finalize a variety of details
 - Locations of managed parking and parking lots
 - Locations for new sidewalk bulb-outs, loading zones, lane configuration, and other related improvements
- Community input on design and aesthetics of BRT facilities
 - Station design and public art
 - Landscaping
 - Station and crosswalk treatments
 - Station furniture and aesthetic treatments

2012 Final Environmental Study – (FEIS/FEIR)*

WE ARE HERE

- Present final project and analysis to public and decision makers
- Present to City Councils of Oakland and San Leandro for project acceptance
- Present to AC Transit Board for project approval

2008-2011 Identify and Refine Locally Preferred Alternative (LPA)

- Meetings with cities, community leaders, and general public

2003-2007 Draft Environmental Study (DEIS/DEIR) – 4 Alternatives Studied

- Technical Analysis
- Release of Draft EIR/EIS

2002 Major Investment Study

- Identified Corridor
- Selected BRT as much less costly and easier to implement
Record of Public Outreach for the Release of the Final Environmental Impact Statement/Report (FEIS/R) for the East Bay Bus Rapid Transit Project
February - March 2012

Prepared: March 2012
Prepared By: Circlepoint, in association with Cambridge Systematics
Prepared For: Alameda-Contra Costa Transit District
Table of Contents

1.0 **Introduction**
1.1 Executive Summary .. 5
1.2 Project Background .. 6

2.0 **Outreach Activities**
2.1 Overview .. 7
2.2 Community Meetings ... 7
2.3 Publicity ... 8
2.4 Informational Materials ... 9

3.0 **Community Comments**
3.1 Overview .. 10
3.2 BRT Project ... 11
3.3 Proposed Project & Station Locations .. 12
3.4 Bikes/Pedestrians ... 12
3.5 Safety .. 12
3.6 Parking .. 13
3.7 Aesthetics ... 13
3.8 Miscellaneous .. 13

4.0 **Appendix**
Public Notice/Announcement (in English, Spanish, Chinese, Korean and Vietnamese)
Public Notice/Newspaper Advertisement (in English, Spanish, Chinese, and Korean)
Meeting Announcements
Bus Card
Informational Fact Sheet (in English, Spanish, Chinese, Korean and Vietnamese)
Meeting Materials
Program & Agendas
Exhibit Boards
Power Point Presentation
Sign-in Sheets
Written Comment Cards
Comment Cards submitted via Mail and Email
1.0 INTRODUCTION

1.1 EXECUTIVE SUMMARY

For several years, the Alameda-Contra Costa Transit District (AC Transit) has worked collaboratively with Oakland, Berkeley and San Leandro to evaluate and implement a Bus Rapid Transit (BRT) project to improve the speed and reliability of transit service on AC Transit’s most heavily travelled corridor. Following the May 2007 Draft EIS/EIR, the AC Transit Board of Directors gave consideration to the recommendations of the cities of Berkeley, Oakland and San Leandro and adopted a Locally Preferred Alternative (LPA) consisting of dedicated bus travel lanes throughout most of Oakland and in north San Leandro. The AC Transit Board of Directors also recommended an additional alternative for study, referred to as the Downtown Oakland to San Leandro (DOSL) Alternative. The decision to consider this shorter alternative was made upon consideration of funding, community acceptance, and environmental issues from downtown Berkeley to San Leandro BART.

In February 2012, the release of the Final Environmental Impact Statement/Report (FEIS/R) marked another important milestone and reflects the input received from local businesses, city governments, community groups and other vital stakeholders. Following the release of the FEIS/R, AC Transit hosted seven community meetings in Oakland and San Leandro for public review and comment on the FEIS/R.

Major themes expressed by the community largely dealt with the trade-offs associated with how BRT achieves greater speed and reliability – namely the use of dedicated lanes which require allocating portions of the roadway to transit that were previously allocated to mixed flow traffic (transit and private cars) and parking. Feedback at the community meetings was mixed, generally either extremely supportive of whatever would provide the greatest benefit to transit riders or concerned about impacts to automobile drivers, parking along the corridor (particularly in front of small businesses) and the distance between stops.

In spring 2012, the FEIS/R, along with the feedback from the community meetings, will be presented to the AC Transit Board for certification. Afterwards, the project will be presented to public and policy makers, including the City Councils of Oakland and San Leandro for project acceptance. Between 2012 and 2014, AC Transit will work with the Cities, community members and the public to finalize BRT design and aesthetics. Construction will take place between 2014 and 2016, with full BRT service beginning in 2016.

This report provides a record of the multi-lingual outreach conducted and the series of community meetings held, including a summary of the comments received. The complete record of comments and informational materials provided to the public are included in the Appendix.
1.2 PROJECT BACKGROUND

Introduction
AC Transit, the Federal Transit Administration (FTA), and the Cities of Oakland, Berkeley and San Leandro have evaluated Bus Rapid Transit as the preferred option to improve transit on one of the busiest transit corridors in AC Transit’s service area.

In 2002, Bus Rapid Transit was selected as the preferred transit technology for the corridor and AC Transit commenced an environmental review process for the East Bay Bus Rapid Transit Project. A Draft Environmental Impact Statement/Report was prepared and released for public review and comment in May 2007. From the fall of 2007 to the spring of 2010, AC Transit worked closely with businesses, residents, transit riders and city staff to select a single project alignment, also referred to as a Locally Preferred Alternative (LPA). The AC Transit Board of Directors made their LPA decision for the project on June 23, 2010 and also recommended an additional alternative for study, the Downtown Oakland to San Leandro (DOSL) Alternative, as a lower cost alternative that would have fewer environmental impacts than the LPA.

In the latter months of 2010 and during the first half of 2011, AC Transit refined the project to reflect the proposed changes in BRT features that emerged following public review of the Draft EIS/EIR. Once this work was completed, the Final Environmental Impact Statement/Environmental Impact Report (FEIS/R) was released for public review on February 3, 2012, and AC Transit hosted a series of community meetings to share the results of the FEIS/R with the public and gather feedback. This report provides a summary of those meetings and the feedback received.

About the Project
The East Bay Bus Rapid Transit (BRT) Project, a 14.38-mile BRT line connecting Berkeley, Oakland, and San Leandro combines the features of rail transit with the flexibility and cost advantages of bus transit. In the East Bay, BRT would replace the current 1/1R route to provide faster, highly reliable service with buses every five minutes. At most points along the route, BRT would operate in its own dedicated lanes. At some points, BRT would reduce the number of on-street parking spaces. AC Transit has worked with local businesses and community groups to reduce these impacts and maximize BRT’s benefits.

The proposed project intends to significantly improve the speed, reliability and quality of public transportation service in the Berkeley-Oakland-San Leandro corridor. AC Transit made a commitment to procure BRT buses that can load and unload passengers on both sides of the vehicle (dual-sided door buses). This allows the construction of a single center platform—rather than two separate platforms—at each BRT stop in median running BRT alignments. The center...
median station configuration results in less displacement of curbside parking along the BRT alignment.

2.0 OUTREACH ACTIVITIES

2.1 OVERVIEW

Release of the Final EIS/R provided the public with an opportunity to review the analysis of impacts and recent project refinements resulting from earlier comments and work with community members, as well as provide comments on the adequacy of the FEIS/R. AC Transit hosted a series of community meetings to foster an open and inclusive process, providing noticing and materials in multiple languages and community meetings along the corridor to facilitate community engagement. The project team used a variety of methods to provide Oakland and San Leandro residents with multiple ways to learn about the revised proposal, the community meetings and provide feedback, including the following:

- Seven community meetings
- Two AC Transit websites: www.actforme.org and www.acttransit.org
- Phone calls
- E-mails to previously identified stakeholder groups and interested parties
- Distribution of meeting notices and informational materials in multiple languages (English, Spanish, Chinese, Korean and Vietnamese)

Comments and questions were gathered through a variety of methods, including at the community meetings, through mail and e-mail. Below is a summary of the outreach activities conducted, publicity, attendance and comments received.

2.2 COMMUNITY MEETINGS

Seven community meetings were held in February and March 2012 at multiple locations along the corridor to provide ample opportunities for the public to attend. The format and content of these meetings was identical. The opening 30 minutes featured an open house where attendees could view project materials, maps and exhibits; next, a 30-minute overview presentation and video; in closing, a one-hour resumption of the open house where attendees could discuss their questions directly with project team members.

Several handouts were provided to all meeting attendees, including an agenda, comment sheet and project overview fact sheet (translated into Spanish, Chinese, Korean and Vietnamese). Translation services were available upon request at all public meetings. Interpreters were provided and are noted below. Comments from the community were gathered via written
comment cards and attendees were reminded that additional comments could be submitted via email and mail up to March 19, 2012.

Dates, times and locations of the seven community meetings, along with the approximate number of attendees and comments received are noted below:

<table>
<thead>
<tr>
<th>Meeting Location</th>
<th>Meeting Date/Time</th>
<th>Estimated Number of Attendees</th>
<th>Number of Comment Cards Submitted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fruitvale-San Antonio Senior Center 3301 E. 12th Street, Suite 201 Oakland, CA 94601 (Spanish Interpreter provided)</td>
<td>February 23, 2012 6:00 - 8:00 pm</td>
<td>21</td>
<td>3</td>
</tr>
<tr>
<td>Eastside Arts Alliance 2277 International Boulevard Oakland, CA 94606 (Spanish and Vietnamese Interpreters provided)</td>
<td>February 27, 2012 6:00 - 8:00 pm</td>
<td>23</td>
<td>6</td>
</tr>
<tr>
<td>Havenscourt Campus 1390 66th Avenue, Auditorium Oakland, CA 94621</td>
<td>February 29, 2012 6:00 - 8:00 pm</td>
<td>12</td>
<td>5</td>
</tr>
<tr>
<td>San Leandro City Hall 835 East 14th Street, South Offices Conference Room San Leandro, CA 94577</td>
<td>March 1, 2012 6:00 - 8:00 pm</td>
<td>66</td>
<td>11</td>
</tr>
<tr>
<td>Oakland City Hall 1 Frank Ogawa Plaza, Hearing Room 3 Oakland, CA 94612 (Cantonese and Vietnamese Interpreters provided)</td>
<td>March 5, 2012 6:00 - 8:00 pm</td>
<td>39</td>
<td>10</td>
</tr>
<tr>
<td>Faith Presbyterian Church 430 49th Street, Sanctuary Oakland, CA 94609</td>
<td>March 7, 2012 6:00 - 8:00 pm</td>
<td>62</td>
<td>14</td>
</tr>
<tr>
<td>Allen Temple Arms 8135 International Boulevard, Multipurpose Room Oakland, CA 94621</td>
<td>March 12, 2012 6:00 - 8:00 pm</td>
<td>91</td>
<td>3</td>
</tr>
</tbody>
</table>

In addition to comment cards submitted at the community meetings, 93 were submitted via mail and e-mail.

2.3 PUBLICITY

To notify the public about the community meetings and the release of FEIS/R, the team used a number of methods. (See the Appendix for copies of outreach materials.) Noticing methods included the following:

- **Advertising:** Display ads were translated and published in various publications:

 ![Oakland City Hall - March 5, 2012](image)
- **Bus signage:** Bus poster-style meeting notices were placed in the space behind the bus driver in English, Spanish, Chinese, Vietnamese and Korean to notify transit riders.

- **E-mail:** Follow-up e-mail communications with attached flyers containing project and public meeting information were sent to Oakland and San Leandro Councils, local homeowner association leaders, Chamber of Commerce and business association representatives for distribution to their members.

- **Phone calls:** Key stakeholders, local churches, community based organizations and community service organizations, such as the Asian Health Services, Sierra Club, Congregations Organizing for Renewal, Urban Habitat, Davis Street Family Resource Center and the Broadmoor housing center along with many others were contacted and provided information regarding the project and community meetings.

- **Meeting alerts:** E-mail reminders were sent prior to each public meeting to community and business stakeholders, as well as attendees of previous project meetings. Phone call reminders also were made to homeowner and community association leaders and the group of key community stakeholders.

- **Meeting notices:** A formal meeting announcement was sent to those who provided comments on the Draft EIR/EIS.

- **Partner websites:** The meeting announcement was posted on the AC Transit website (www.acttransit.org and http://www.acttransit.org/planning-focus/your-guide-to-bus-rapid-transit/) and the ACTforMe.org website (www.actforme.org).

- **Meeting announcements in Libraries:** Meeting announcements were placed in libraries in Berkeley, Oakland and San Leandro. See the list of libraries included with the noticing materials in the appendix.

2.4 INFORMATIONAL MATERIALS

A variety of informational materials were provided at the community meetings. Descriptions of these materials are noted below and samples are included in Appendix.
• **Agenda/Program:** The agenda, also translated and available in Spanish, provided attendees with information about the meeting format and the program guided attendees though the six exhibit stations.

• **Comment Cards:** The comment cards, also translated and available in Spanish, were available at the sign in table at all community meetings. Meeting attendees could submit comment cards at the meetings and electronically by e-mail or mail them to AC Transit by the close of the comment period.

• **Project Fact Sheets:** Fact sheets about the project, highlighting the inclusion of the Downtown Oakland to San Leandro (DOSL) Alternative, were provided at every public meeting in multiple languages (English, Spanish, Chinese, Korean and Vietnamese).

• **Exhibit Boards:** Exhibit boards were prepared for the informational open house portion of the public meetings to provide attendees with an overview of the project, details about the project, benefits, impacts and next steps.

• **Map of the Alignment:** Several large, detailed maps of the entire alignment, including locations of bus stops, dedicated lanes, turn lanes, new or improved signalized intersections, changes to parking impacts, and other detailed information were provided to show exactly what is being proposed in Berkeley, Oakland and San Leandro.

• **Additional details by neighborhood:** maps with mitigated parking options, changes to stations and medians were provided.

• **Video Overview:** A video about the project was projected onto a large screen at the beginning of the PowerPoint presentation.

• **FEIS/R:** The FEIS/R was available for review at the meetings and at multiple locations, including libraries along the corridor (a list of locations is included in the appendix as part of the public notice). CD copies of the document were also available for meeting attendees.

3.0 COMMUNITY COMMENTS

3.1 OVERVIEW
A variety of methods were provided for the public to comment. At the community meetings, attendees were provided with comment cards and encouraged to submit comments any time prior to 5:00 P.M. Monday, March 19, 2012 via mail or e-mail, if that was their preference. In total, 52 written comment cards were submitted at the meetings.

In general, although the team noted a wide range of issues and concerns, there were several key themes consistently identified by multiple individuals.

- Any negative impacts on automobile travel time
- Impacts on businesses due to loss of parking and potential for increased congestion
- Concern that the benefit to transit riders was not worth the trade-off for motorists

Just as there were consistencies in areas of concern, public feedback was also consistent where support was expressed. Feedback on benefits discussed:

- Increased transit accessibility to mobility-impaired riders
- Environmental benefits of BRT as a viable alternative to automobile travel
- Improved bus service reliability with the construction of BRT

There also were several specific areas of the proposal identified for further examination:

- Need to consider additional safety tools at specific stations before final design is completed
- Concern over the project’s high cost
- Change in locations of several stations to better serve the local community

The following is a summary of the key issues raised by the community meeting attendees and expressed to the project team in written comments. Copies of all comments submitted, including those submitted outside of the open house meetings, are included in the Appendix.

3.2 BRT PROJECT

- Multiple attendees expressed strong support for BRT, with those preferring the longer LPA version constructed and dedicated bus lanes
- Multiple attendees did not want the BRT system to be built
- Several attendees would like the full BRT built into Downtown Berkeley and on Telegraph Avenue
- Several attendees saw a missed opportunity if the project was not built in its full form
- One attendee opposed the project due to the high cost to build
- One attendee expressed support due to the quick access to thousands of jobs at Pill Hill and UC Berkeley
- One attendee would like to see the project extended further south into more of San Leandro
- Several attendees expressed preference for DOSL
- Several attendees wanted the full BRT built to make sure North Oakland communities were not left out in transit and project benefits
- One attendee supported the project for its environmental and social justice aspect

3.3 PROPOSED PROJECT & STATION LOCATIONS
- Several attendees would like to see the 56th Street stop at Telegraph Avenue near Route 24 be moved out from under the freeway overpass regarding safety concerns, with several suggesting moving it closer to 51st Street
- Several attendees would like an additional stop between 47th Street and 56th Street at Telegraph Avenue
- Several attendees would like the 71st Street at International Boulevard moved to 68th Street
- One attendee suggested moving the line to another major thoroughfare in Oakland, rather than on Telegraph Avenue
- Multiple attendees oppose dedicated bus lanes on Telegraph Ave, would like mixed-flow lanes
- Several attendees are against the new traffic light at 61st at Telegraph Ave
- Several attendees are worried about the local impact of the stop at 59th & Telegraph

3.4 BIKES/PEDESTRIANS
- Several attendees expressed concerns over loss of bike lanes/pedestrian safety on International & 40th/44th Streets
- One attendee would like secure bike racks at stops
- One attendee would like wider bike lanes
- One attendee would like bike lanes between the sidewalk and parking lanes
- One attendee would like to see the creation of a “complete” street on Telegraph Avenue
- Several attendees called for full funding for bicycle/pedestrian improvements before construction commences

3.5 SAFETY
- One attendee would like a signal at High Street & International
- Several attendees suggested more lighting around 69th Avenue
- One attendee would like more monitoring at stations
- One attendee worried about gun violence around 65th Avenue
- One attendee suggested pedestrian and bike improvement for ease of access to new platforms
- Many attendees addressed concern over safety caused by additional traffic near Peralta Elementary at Telegraph & Alcatraz/Canning & 63rd

Record of Public Outreach for Release of FEIS/R for the East Bay Bus Rapid Transit Project
3.6 PARKING
- Multiple attendees, most representing local businesses, worried about how the loss of parking/loading zones would affect their businesses
- One attendee expressed parking concern at International Blvd, between 20th Street & Munson Way
- One attendee expressed parking concern at Sunnyside & East 14th Street

3.7 AESTHETICS
- One attendee would like stations to use wire mesh, rather than plastic due to graffiti concerns
- One attendee would like maintenance issues addressed for the stop at 23rd & East 14th Street
- One attendee would like community and neighborhood talents and organization to work with AC Transit toward beautification efforts
- One attendee would like reclaimed water used for landscaping
- One attendee would like a minimum amount of landscape medians
- One attendee would like bus bulbs and fare payment stations installed

3.8 MISCELLANEOUS
- One attendee would like cash flow and capacity building for small local contractors
- One attendee would like planning done to support affordable housing
- One attendee would like to see partnerships with local businesses to attract customers to neighborhoods and use BRT
- One attendee would like additional outreach for low-income bus riders
- One attendee was concerned about the potential environmental and economic impacts of BRT in North Oakland and Rockridge
- One attendee suggested AC Transit partner with job training programs to hire workers
- One attendee would like to see signage for social services, mentioning San Antonio/Eastside Arts Alliance
Summary of Publicity and Outreach for the East Bay Bus Rapid Transit (BRT)
Public Hearing, April 25, 2012

Conducted by AC Transit Marketing, AC Transit External Affairs, Circlepoint, and Cambridge Systematics

Web site
- Posted homepage article with links to legal notice in English, Spanish, Chinese, Vietnamese, and Korean.

On-board
- Posted car cards in English, Spanish, Chinese, Vietnamese, and Korean to all buses.

Electronic communications
(to constituencies in the cities along the "build" portion of the BRT corridor)
- Sent e-mail to more than 350 community groups, agencies, and community sites in Oakland and San Leandro.
- Sent e-mail to 23 elected officials in Oakland and San Leandro.
- Sent e-News message to more than 7,000 subscribers to bus lines in Oakland and San Leandro.
- Posted information on Facebook and Twitter.

Mail communications
- Sent legal notice to approximately 1,000 individuals and organizations that commented on the DEIR, FEIS, or gave name and address at community meetings. Notice included reference to availability of translated versions on Web site.

Legal notices
- Published notices in the Oakland Tribune (English), Sing Tao Daily (Chinese), el Mundo (Spanish), and Korea Daily (Korean).

Display advertising
- Placed ads in the Oakland Tribune (English), San Leandro Times (English), El Mensajero (Spanish), The World Journal (Chinese), and Korea Times (Korean).

Media
- Issued press release to all local media, including non-English outlets.

Other
- Distributed Vietnamese version of display ad to organizations serving the Vietnamese community (Note: At this time, there is no local Vietnamese newspaper published, and therefore legal notices and display ads could not be placed)
- Set up Spanish- and Chinese-language voicemail to accept comments in those languages.

AC Transit Marketing & Community Relations, 4/19/12
Notice of Determination

TO:
Office of Planning and Research
For U.S. Mail:
P.O. Box 3044
Sacramento, CA 95812-3044

☑ County Clerk
County of: Alameda
Address: 1106 Madison Street
Oakland, CA 94607

FROM:
Public Agency: Alameda-Contra Costa Transit District
Address: 1600 Franklin Street, Oakland, CA 94612
Contact: Jim Cumradi, Project Manager
Phone: (510) 891-4755

SUBJECT: Filing of Notice of Determination in compliance with Section 21108 or 21152 of the Public Resources Code.
State Clearinghouse Number (if submitted to State Clearinghouse): 2003052070

Project Title: Ac Transit East Bay Bus Rapid Transit Project in Alameda County

Project Location (include county): Alameda County, Cities of Berkeley, Oakland, San Leandro

Project Description: Implementation of high level bus rapid transit service and related infrastructure along a 14.38 mile corridor connecting the cities of Berkeley, Oakland and San Leandro in the San Francisco Bay Area of California.

This is to advise that the Alameda-Contra Costa Transit District (AC Transit) has approved the above described Lead Agency or Responsible Agency) project on April 25, 2012 and has made the following determinations regarding the above described project:

1. The project ☑ will □ will not have a significant effect on the environment.
2. ☑ An Environmental Impact Report was prepared for this project pursuant to the provisions of CEQA. ☐ A Negative Declaration was prepared for this project pursuant to the provisions of CEQA.
3. Mitigation measures ☑ were □ were not made a condition of the approval of the project.
4. A mitigation reporting or monitoring plan ☑ was □ was not] adopted for this project.
5. A statement of Overriding Considerations ☑ was □ was not] adopted for this project.
6. Findings ☑ were □ were not] made pursuant to the provisions of CEQA.

This is to certify that the final EIR with comments and responses and record of project approval, or the Negative Declaration, is available to the General Public at:
Alameda-Contra Costa Transit District, 1600 Franklin Street, Oakland, CA 94612

Signature (Public Agency) Title:
Date: April 25, 2012 Date Received for filing at OPR:

Authority cited: Section 21083, Public Resources Code.

Revised 2005
ALAMEDA-CONTRA COSTA TRANSIT DISTRICT
RESOLUTION NO. 12-018

RESOLUTION CERTIFYING THE FINAL ENVIRONMENTAL IMPACT REPORT
PREPARED FOR THE ALAMEDA-CONTRA COSTA TRANSIT DISTRICT FOR THE
EAST BAY BUS RAPID TRANSIT PROJECT; SELECTING THE DOWNTOWN
OAKLAND-SAN LEANDRO ALTERNATIVE (DOSL) AS THE LOCALLY
PREFERRED ALTERNATIVE FOR THE EAST BAY BUS RAPID TRANSIT
PROJECT; AND AUTHORIZING THE FILING OF A NOTICE OF DETERMINATION

WHEREAS, worsening traffic congestion has resulted in delays to transit and
decreasing system reliability in communities throughout the Berkeley-Oakland-San
Leandro corridor; and

WHEREAS, the Alameda-Contra Costa Transit District (the District) undertook a
Major Investment Study to address these problems; and

WHEREAS, in 2001, the District and the cities of Berkeley, Oakland and San
Leandro selected Bus Rapid Transit (BRT) as the Locally Preferred Alternative to
address long-term solutions that will accommodate future growth in travel; and

WHEREAS, in 2004, the District and the cities of Berkeley, Oakland and San
Leandro selected detailed alternatives for study in the Draft Environmental Impact
Study/Report; and

WHEREAS, in 2007, the District released the Draft Environmental Impact
Study/Report and solicited public review and comments on the impacts and findings;
and

WHEREAS, in April and May 2010, the cities of Berkeley, Oakland and San
Leandro advised the District of their recommended individual Locally Preferred
Alternatives selected through their city processes; and

WHEREAS, the Board of Directors selected two alternatives to be considered in
the Final Environmental Impact Statement/Report: 1) the Full Alternative with a build
investment that runs from the Oakland/Berkeley border to the San Leandro BART
station; and, 2) the Downtown Oakland-San Leandro Alternative (DOSL) with a build
investment from Downtown Oakland to the San Leandro BART station; and

WHEREAS, the Final Environmental Statement/Environmental Impact Report
(FEIS/R) was prepared consistent with requirements of the National Environmental
Policy Act and the California Environmental Quality Act and their implementing
regulations; and
WHEREAS, on February 3, 2012, the District released the Final Environmental Impact Study/Report and conducted seven associated public outreach meetings within the affected cities; and

WHEREAS, the public comment period on the Final Environmental Impact Study/Report closed on March 19, 2012; a total of 93 written comments were received during the comment period along with 43 comments received from the meetings via email, letters and fax, and 7 comments received after the comment period closed; and

WHEREAS, at its regular meeting on March 28, 2012, the Board of Directors set public hearings on April 25, 2012 at 2:30 p.m. and at 5:00 p.m. to receive public comment concerning the certification of the East Bay Bus Rapid Transit Final Environmental Impact Report and the selection of a Locally Preferred Alternative from the two alternatives studied in the Final Environmental Impact Study/Report; and

WHEREAS, notices of the public hearing were widely distributed and sent to all that commented on the Draft Environmental Impact Study/Report including individuals, groups and local jurisdictions; notices were published in major local newspapers of general circulation including English, Spanish, Chinese and Korean publications; notices were installed on board vehicles in English, Spanish, Chinese, Korean and Vietnamese; and, notices and articles were published on the District website; and

WHEREAS, on April 25, 2012, the Board of Directors held public hearings at 2:30 p.m. and at 5:00 p.m. at the Alameda-Contra Costa Transit General Offices located at 1600 Franklin Street in Oakland, California to receive testimony from the public regarding the certification of the Final Environmental Impact Report for the East Bay Bus Rapid Transit Project and selection of a Locally Preferred Alternative for the Project; and

WHEREAS, up to the close of the public hearing, the Board of Directors considered the information contained in GM Memo No. 12-083a, the attachments to that memo, the oral testimony received at the public hearings as well as all forms of written comment received prior to the public hearings; and

WHEREAS, the DOSL alternative provides great benefit to the community and is able to be implemented with the available committed resources; and

WHEREAS, the DOSL alternative complements the International Boulevard Transit Oriented Development Plan; and

WHEREAS, the DOSL alternative is the environmentally superior alternative as referenced in the FEIS/R.

NOW, THEREFORE the Board of Directors of the Alameda-Contra Costa Transit District does resolve as follows:

Resolution No. 12-018
Section 1. Per CEQA Guidelines Section 15090, prior to approving the proposed project or DOSL Alternative, the AC Transit Board of Directors (Board) certifies that:

- The Final EIR has been completed in compliance with CEQA;
- The Final EIR was presented to the Board and that the Board reviewed and considered the information contained in the Final EIR in addition to the Findings of Fact, Statement of Overriding Considerations and Mitigation Monitoring and Reporting Plan; and
- The Final EIR reflects the independent judgment and analysis of the Alameda-Contra Costa Transit (AC Transit).

Section 2: The Downtown Oakland-San Leandro Alternative (DOSL) is adopted as the preferred Alternative for implementing Bus Rapid Transit (BRT) in the corridor.

Section 3. Staff is authorized to file a Notice of Determination with the County of Alameda Clerk and the State Clearinghouse (the State of California Governor’s Office of Planning and Research State Clearinghouse and Planning Unit) and Pay Related Filing Fees for the above actions taken under this Resolution.

Section 4: This resolution shall become effective immediately upon its passage by four affirmative votes of the Board of Directors.

Resolution No. 12-018 was passed and adopted this 25th day of April, 2012.

Elsa Ortiz, President

Attest:

Linda A. Nemeroff, District Secretary

I, Linda A. Nemeroff, District Secretary for the Alameda-Contra Costa Transit District, do hereby certify that the foregoing Resolution was passed and adopted at a Regular Meeting of the Board of Directors held on the 25th day of April 2012 by the following roll call vote:

Ayes:
Noes:
Absent:
Abstain:

Linda A. Nemeroff, District Secretary
Approved as to Form and Content:

__
Vincent C. Ewing, General Counsel
East Bay Bus Rapid Transit
Public Hearing

April 25, 2012

CEQA CERTIFICATION
Certification of Final EIR Requires the Board to certify the following:
1. The FEIR has been completed in compliance with the law (CEQA)
2. The FEIR was presented to the Board and the Board has reviewed and considered the information it contains
3. The FEIR reflects the independent judgment and analysis of the District

Certification includes adoption of Findings of Fact and Mitigation Monitoring and Reporting Plan
CEQA CERTIFICATION
Findings of Fact and Statement of Overriding Considerations (Att. A)
1. Required by CEQA
2. District cannot carry out project with one or more significant environmental effects unless the Board reviews/adopts the written finding for each of those effects, including rationale for the finding.
3. Findings: 6 intersections on full LPA cannot be mitigated to less than significant; 1 intersection on DOSL cannot be mitigated to less than significant.

CEQA CERTIFICATION
Statement of Overriding Considerations
1. District must balance the benefits (economic, legal, social or other) against avoidable environmental risks
2. If benefits outweigh the adverse environmental consequences, the effect may be considered “acceptable”
3. Statement in writing includes the specific reasons to support the certification
4. Included in the Findings of Fact
CEQA CERTIFICATION

Mitigation Monitoring & Reporting Plan
1. CEQA requires agency adopt a monitoring and reporting program to ensure that any mitigations developed to lessen impacts will be carried out
2. Each potentially significant environmental impact has identified mitigation strategies
3. *Mitigations become part of the project upon adoption*

CEQA CERTIFICATION

CEQA HISTORY
1. Notice of Preparation (NOP) scoping meetings:
 May-June 2003
 a) 4 public meetings
 b) 60-day review period closed July 3, 2007
 a) 7 public meetings
 b) 45 day review period closed March 19, 2012
CEQA CERTIFICATION

CEQA OUTREACH
1. 7 public meetings throughout corridor
2. Wide notification of meetings:
 a) Mailing to all who commented on the DEIR/S
 b) Mailings to all local elected officials
 c) Website, E-news, newspapers, on-board
 d) Notification in foreign languages with translations available upon request
3. Public meetings attended by over 300 people
4. 143 individual written comments received (7 late)

ADOPTION OF DOWNTOWN OAKLAND TO SAN LEANDRO ALTERNATIVE

Project Evolution
1. 2001 Major Investment Study (MIS)
 a) Recommends Bus Rapid Transit in Telegraph/International corridor
 a) Initial analysis of benefits and impacts
3. 2010 Cities and AC Transit Select Locally Preferred Alternatives for FEIS/R
4. 2012 Final Analysis of Project Alternatives
 a) Full LPA and DOSL
ADDITION OF DOWNTOWN OAKLAND TO SAN LEANDRO ALTERNATIVE

Project Refinements Since 2010 City Actions
1. Addition of DOSL as alternative to project
2. Use of dual sided door buses
 a) Allows single center platform in median running BRT segments
 b) Less parking displacement
 c) Retention of almost all existing medians and increased amount of new landscaped medians
3. Less impact to traffic operations (by incorporating roadway modifications at several major intersections)

Project Description – Downtown Oakland-San Leandro (DOSL) Alternative
- 9.5 miles in Oakland and San Leandro
- Signal priority, off-board fare payment, level passenger boarding, air conditioning, safety and security features, pedestrian access improvements
- Dedicated bus lanes (81% of corridor)
- ≈$153 million capital cost
DOSL & FULL PROJECT QUANTITATIVE COMPARISON

<table>
<thead>
<tr>
<th>Measure (2015)</th>
<th>Full Project</th>
<th>DOSL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corridor Ridership</td>
<td>+17,100</td>
<td>+11,400</td>
</tr>
<tr>
<td>Net cost per passenger trip</td>
<td>-$0.92</td>
<td>-$0.76</td>
</tr>
<tr>
<td>Vehicle Miles Traveled</td>
<td>-11,300</td>
<td>-8,000</td>
</tr>
<tr>
<td>Greenhouse gases (CO₂ equivalents lbs per day)</td>
<td>-1,900</td>
<td>-4,100</td>
</tr>
<tr>
<td>Capital Cost</td>
<td>$205 million</td>
<td>$153 million</td>
</tr>
<tr>
<td>Increase in Annual Operating Subsidy</td>
<td>$2.76 million</td>
<td>$1.03 million</td>
</tr>
<tr>
<td>Increase in average peak period transit speed</td>
<td>+25%-30%</td>
<td>+25%-30%</td>
</tr>
<tr>
<td>Decrease in average peak period auto speed</td>
<td>-18-23%</td>
<td>-18-23%</td>
</tr>
</tbody>
</table>

DOSL & FULL PROJECT QUALITATIVE COMPARISON

<table>
<thead>
<tr>
<th>Measure (2015)</th>
<th>Full Project</th>
<th>DOSL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corridor Ridership</td>
<td>Better</td>
<td></td>
</tr>
<tr>
<td>Subsidy per passenger trip</td>
<td>Better</td>
<td></td>
</tr>
<tr>
<td>Reduces Vehicle Miles Traveled</td>
<td>Better</td>
<td></td>
</tr>
<tr>
<td>Reduces Greenhouse gases</td>
<td>Better</td>
<td></td>
</tr>
<tr>
<td>Capital Cost (Constructability)</td>
<td>Better</td>
<td></td>
</tr>
<tr>
<td>Increase in Annual Operating Subsidy</td>
<td>Better</td>
<td></td>
</tr>
<tr>
<td>Traffic & Parking Impacts</td>
<td>Better</td>
<td></td>
</tr>
</tbody>
</table>
BRT Designs with Dual Sided Buses: DOSL Alternative

11th St and Harrison St
More Jobs, More Economic Development & Less Traffic

11TH STREET @ HARRISON STREET
OAKLAND

EXISTING CONDITIONS

BRT BUS RAPID TRANSIT

More Jobs, More Economic Development & Less Traffic

11th STREET @ HARRISON STREET
OAKLAND

PROPOSED CURBSIDE STATION
CANOPY OPTION C
International Blvd and 34th Ave
International and 82nd
More Jobs, More Economic Development & Less Traffic

INTERNATIONAL BLVD @ 82ND AVE - OAKLAND LOOKING NORTHWEST
EXISTING
International Blvd and Durant Ave
BRT Timeline

- 2002, Major Investment Study – LPA Adopted
- 2003-2007, Draft Environmental Study
- 2008-2011, Refine LPA
- 2012, Certify EIR—Adopt DOSL
- 2012-2014, Detailed Design
- 2002, Major Investment Study – LPA Adopted

We Are Here

2014-2016, Construction
BOARD ACTION

STAFF RECOMMENDATION
Consider adoption of Resolution 12-018 (p.167):

1) Certifying the FEIS
2) Selecting the DOSL as the Locally Preferred Alternative
3) Authorizing the filing of the Notice of Determination (NOD)